
Utilizing Minecraft Bots to Optimize Game Server
Performance and Deployment

Matt Cocar, Reneisha Harris and Youry Khmelevsky
Computer Science Department, Okanagan College

Kelowna, BC V1Y 4X8, Canada
Emails: {matt.cocar, reneisha.harris}@gmail.com, ykhmelevsky@okanagan.bc.ca

Abstract—To simulate a realistic game server environment,
we utilized open source software libraries to create automated
players (bots) for the globally renowned online game: Minecraft.
The fairly simple design of the Minecraft server as well as its
massive development and support community facilitates consid-
erable research and analysis prospects. As such, the goal of our
investigation was to emulate and then analyze the real-world
stress that game-players actively create on hosting servers. We
achieved this through creating scripted movements of Minecraft
characters that are connected to the Minecraft server(s) hosted
within our virtual infrastructure. After this was achieved, we
explored altering the methods of running the active Minecraft
servers to control CPU load; we primarily explored manually
setting the CPU affinity of the Minecraft server thread to run on
specific virtual cores. Collecting CPU workload data while the
bots were running around on our servers gave us consistent and
predictable readings that confirmed the success of our methods
we used to control performance. Evidence of this is illustrated
through the use of graphs and other experimental data outlined
in the body of this document.

I. INTRODUCTION

In early 2014, students of Okanagan College chose to
experiment with locally hosted Minecraft servers and custom
designed bots that used libraries from a community developed
protocol implementation named MCProtocolLib [1]. Because
Minecraft’s architecture is well documented and its community
is rich with developer support, it was a prime candidate for
experimentation with custom developed tools. Also, players
can download the server application so they can host their
own worlds, which means we have total control over the
infrastructure it runs on.

In this paper we control the Minecraft server threads to
expose how scaling from one server to ten servers increases
load across the system. To start, we will examine the infras-
tructure of our environment; it was set up as a virtual network
between the server and client(s). In this infrastructure, we have
the following configuration: One virtual machine that is used
to host the Minecraft servers, and several virtual machines
those are used to run bots for every two Minecraft servers.

Each Minecraft server hosts 25 bots, so this translates into
one virtual machine running a total of 50 bots. Following
from this, testing was done on a total of 10 Minecraft servers.
Therefore, this utilized resources of 5 virtual machines. For
our evaluations, this gave a semi-accurate representation of
real-world players that are on separate hosts and connecting

Fig. 1. Current Infrastructure Diagram

to a Minecraft server. The configuration also helps the bots to
run more smoothly due to spreading out their workload.

The following section has details outlining simulation tools
that are currently used to evaluate game performance (see
Section II). We then go on to provide a detailed illustration
of the set-up of our experimental infrastructure. Accompa-
nying this is a discussion of the results obtained through
our performance analysis which also includes data collection,
measurements and their associated interpretations. Section III
of this document outlines the details of the bot design and its
associated applications in our Minecraft server performance
analysis. In Section IV, we go on further to discuss the
deployment of the Minecraft servers and then in Section V
we discuss the process of automating and optimizing the Bot
for testing. Section IX outlines our future plans and Section
X summarizes our research results.

II. EXISTING WORKS

The previous research comprised an investigation into the
maximum possible workload that could persist on CentOS 6.5

2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)

978-1-5090-5538-8/17/$31.00 ©2017 IEEE

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:25:41 UTC from IEEE Xplore. Restrictions apply.

and CentOS 7.0 virtual servers; this workload consisted of our
custom Java-based bots [1].

There are some discussion by authors surrounding inter-
active online games, with particular focus on “First Person
Shooters” (FPS) genre [2], [3] and the accompanying network
traffic for these games [4]. Their investigations explore the
impact of the network on the games and also looks at realistic
traffic generators.

A technical report obtained from IBM [5] demonstrates that
“rapid system response time, ultimately reaching sub-second
values and implemented with adequate system support, offers
the promise of substantial improvements in user productivity”.
It is “better to implement sub-second system response for
their own online systems” and usually computers are not
well balanced. The system response time was divided in two
categories that were deciphered as critical components such
as communication time and computer response time.

One of the contributors to the library (mentioned in the next
section) has programmed a bot to be able to find and navigate
to another player using A* path finding [6].

III. IMPLEMENTATION OF THE BOT

In this research, the Minecraft players’ (bots) actions were
developed using a NodeJS library called PrismarineJS/mine-
flayer. We utilized their abstraction of the Minecraft network
protocol: PrismarineJS/node-minecraft-protocol. This is made
incredibly simple to do through use of the Mineflayer API.
Some code snippets that highlight key features are provided
below (see Listing 1) and illustrate some chief functionality
that supported our efforts to achieve scripted player move-
ments that allowed us to stress test our server VM.

Listing 1. createBot Function
. . .
b o t . on (’ spawn ’ , f u n c t i o n () {

v a r t i m e r = 1000 ;
b o t . s e t C o n t r o l S t a t e (’ fo rward ’ , t ru e) ;
f o r (v a r i = 0 ; i < ITERATIONS ; i ++) {

s e t T i m e o u t (f u n c t i o n () {
b o t . e n t i t y . yaw = (Math . PI ∗ 0 . 5) ;
} , t i m e r) ;

. . .
b o t . s e t C o n t r o l S t a t e (’ fo rward ’ , f a l s e) ;
} , t i m e r) ;

}) ;

The first part of the Create Bot function connects a player
to the Minecraft server. The bots we spawn are considered
unregistered players, which means they need special server
parameters or they will not be able to connect.

A listener is attached to the bot object and waits until
the spawn event occurs, then signalling that there is now
a Minecraft character placed in the game world. The bot’s
control state is set to forward, which tells the server that the
bot is walking. The for-loop controls when movements occur.
Specifically, for each second, we tell the bot to turn 90 degrees,
making it walking in a square pattern.

Listing 2. makeBots; The Main function
. . .
whi le (b o t c o u n t < NUM BOTS) {

c r e a t e B o t (BOTNAME PREFIX +
b o t c o u n t) ;
b o t c o u n t ++;

}

The main function in Listing 2 invokes createBots. It controls
how many bots the script will spawn in its instance. A separate
BASH script executes the bot script 25 times to take advantage
of multiprocessing.

IV. DEPLOYMENT OF THE MINECRAFT SERVERS

The version of the Minecraft server was selected based on
the compatibility with Mineflayer. They include: Prismarine-
JS/mineflayer 1.8.0 and Minecraft server 1.8.9. We used a
fairly simple approach to set up 10 Minecraft servers on one
host; a base server was created and its configuration was
customized for all the other servers to be cloned from it. The
procedure for this includes the following steps:

• First, the server.jar file has to be run: The nogui argu-
ment is needed for environments without GUI environ-
ments, so in our case, this argument is necessary. The
server.properties file is automatically generated so the
user can configure server options. Its main options are
denoted in Listing 3:

Listing 3. The main server options
g e n e r a t o r−s e t t i n g s =FLAT
l e v e l−type =FLAT
max−p l a y e r s =100
s e r v e r−p o r t =25565
spawn−a n i m a l s = f a l s e
g e n e r a t e−s t r u c t u r e s = f a l s e
o n l i n e−mode= f a l s e

where generator-settings, level-type, and generate-
structures are for making the generated Minecraft world
flat, and without any buildings to get in the way of
the bots. Animal spawning (spawn-animals) is turned
off because they spawn randomly around the map and
can affect performance readings for certain cores that are
assigned certain Minecraft servers exhibiting this case.
online-mode is turned off to allow unregistered players
(the bots) to connect to the Minecraft servers. Lastly,
server-port is used to control which port a Minecraft
server listens on. This option is particularly important
to us because we are running all of the servers on one
host, creating the need for multiple servers listening on
different ports.

• After the server.properties are set up, deleting the created
/world/ directory is necessary, so a fresh, flat world
gets created. server.jar creates many files, so it is also
necessary to have separate folders for each Minecraft
server. At this point, the base server setup is ready to be

2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:25:41 UTC from IEEE Xplore. Restrictions apply.

cloned. Simply copying the entire folder and renaming it
creates the clones.

• Lastly, the new clones need to have their server.properties
altered by setting server-port to a different port than the
other servers. The firewall has to have all of those ports
open for bots or players to connect.

V. AUTOMATING AND OPTIMIZING THE BOT FOR TESTING

Two BASH scripts were written to automate spawning and
de-spawning the bots. Early tests results showed that if we
used only one NodeJS process to spawn bots, they would
misbehave by not always turning when they were supposed
to, or sometimes they would delay for a few seconds and
not move forward. Spawning one bot per NodeJS process
gave better results and as a consequence of this, server
load averages across cores with server affinity were more
consistent when different tests were done to compare results.
Below is an illustration of the scripts created for the Bot
Spawner as well as the Bot Destroyer.

1) Bot Spawner: The spawning script, bot spawner.sh takes
in

< s c r i p t . j s> < l i s t −of−i p s> < i t e r a t i o n s >
<b o t s p e r i n s t a n c e > <num ins t ances>

as command line arguments. script.js, is a JavaScript file
that uses PrismarineJS/mineflayer. For our tests, we used the
previously mentioned script (Listing 4).

Listing 4. scripts.js
f o r i p in $ (c a t $ s e r v e r I P s T x t)
do

h o s t =$ (echo $ i p | awk −F : ’{ p r i n t $1 } ’)
p o r t =$ (echo $ i p | awk −F : ’{ p r i n t $2 } ’)
echo ” Spawning b o t s on $ h o s t : $ p o r t ”

f o r group in $ (seq 1 $ n u m b e r O f I n s t a n c e s)
do

l a u n c h e s node as a background p r o c e s s
node $ m i n e f l a y e r S c r i p t $ h o s t $ p o r t
$ i t e r a t i o n s $ b o t s P e r I n s t a n c e
grp−$group− &

done
done

The first part of the code reads a list of Minecraft server
IPs and ports. Each IP is a server that this script will spawn
bots on. For our testing, we spawned 1 NodeJS process per
bot for the best stability. $numberOfInstances is given 25, and
$botsPerInstance was set to 1 (CL arguments). Each instance
of NodeJS is spawned as a background process so the script
can continue looping. Persistent processes caused trouble
after finishing a test, as there was no easy way to kill the
spawned background processes other than using top or kill pid.

2) Bot Destroyer: The bot destroyer, aptly named bot-
destroyer.sh is a script that automates the task of killing
NodeJS processes. Essentially, it makes cleaning up the bots
up after tests a lot quicker:

ps no pid , command > u s e r . p i d s
echo −n > b o t p i d s . p i d s

The records that ps generates are formatted 〈pid,command〉.
command is the line of BASH that spawned the process (we
want to filter out non-NodeJS processes):

whi le read p ro c
do

echo $proc | g re p ” [n] ode . ∗ \ . j s ”
| awk ’{ p r i n t $1 } ’ >> b o t p i d s . p i d s

done < u s e r . p i d s

Each record is filtered by grep using a tailored RegEx pat-
tern to filter out only the NodeJS processes that we spawned.
awk is used to output only the PID of the filtered lines:

rm u s e r . p i d s # c l e a n u p
whi le read p i d
do

k i l l $p id
done < b o t p i d s . p i d s

After some cleanup of the lint that previous code created,
the script reads all of the freshly filtered PIDs and runs kill
with the ith PID as an argument.

VI. RUNNING MINECRAFT SERVERS FOR TESTING

When the Minecraft servers run as background processes,
they stall. We used the GNU Screen sessions to efficiently
manage more than one running server. After the sessions are
created, we attach to the first session and start a Minecraft
server. Then, we detach from that session back to the main
session. Next, we need to find the PID of the main Java process
running the Minecraft server to run jstack on:

$ ps −n
. . .
24135 p t s / 1 S l +
15 :50 j a v a − j a r s e r v e r . j a r nogu i
. . .
$ j s t a c k 24135

jstack lists lots of information about each thread in a JVM
instance. There is one in particular that we are interested in
setting CPU affinity for:

$ j s t a c k 24135 | g re p ’ ’ S e r v e r t h r e a d ’ ’
S e r v e r t h r e a d n i d =0 x5e77

The nid = 0x5e77 part is the PID (in hex code) of the
actual game server thread. To set its CPU affinity, we need
the decimal conversion:

$ t a s k s e t −cp 0 $ ((0 x5e77))
p i d 24183 ’ s c u r r e n t a f f i n i t y l i s t : 0−31
p i d 24183 ’ s new a f f i n i t y l i s t : 0

2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:25:41 UTC from IEEE Xplore. Restrictions apply.

Now, the Minecraft server thread is running only on CPU
0. This process is repeated for every Minecraft server after
startup using subsequent virtual cores. It should be noted that
there are other threads involved in the JVM stack, like garbage
collection and socket connections, which is still managed
automatically. Only the server thread is affected, since we
suspect that it creates the most workload.

VII. COLLECTING HOST WORKLOAD DATA

The monitoring tool used to gather data is sar from the
sysstat package. Our sar configuration is set to poll for data
every 1 second for 40 seconds. The sar output file is in
an unreadable object format, so using sadf, the formatter, is
necessary to create Comma Separated Value records for easy
parsing and/or importing into DBMS. An example of output:

1 . # hos tname ; i n t e r v a l ; t imes t amp ;CPU;% u s e r ;
%n i c e ;% sys tem ;% i o w a i t ;% s t e a l ;% i d l e
2 . 0 0 . g a m e s e r v e r . SysCon2017 ;1;2017−02−09
2 3 : 1 0 : 1 9 UTC ; 0 ; 0 . 0 0 ; 0 . 0 0 ; 0 . 0 0 ; 0 . 0 0 ; 0 . 0 0 ;
100 .00
3

The testing and data collecting process happens each time
a server is added, with 25 bots spawned on all servers.

VIII. HOSTING MACHINE PERFORMANCE ANALYSIS

The goal of this experiment was to collect CPU workload
data of server hosts that are running multiple, active Minecraft
servers. That is, Minecraft servers with 25 players connected
to each of them. Our attempts at controlling the workload
generated from these game servers is graphically depicted
below.

Fig. 2. No Minecraft servers running. It represents our host while it is
completely idle (the baseline).

First, we show a baseline graph. It shows workload data of
the host with no Minecraft servers running. Pay attention to
the y-axis scaling, as the bar heights are slightly misleading
at first glance.

Fig. 3 clearly demonstrates that our attempt at controlling
workload of the Minecraft servers is successful. It shows
that our first server, which has its affinity set to virtual core
0 (represented as 1 in the figure), is creating much more
workload on that core than the rest of the cores. There are

Fig. 3. 1 Minecraft server thread running on virtual core 1.

Fig. 4. 5 Minecraft server threads running on separate virtual cores 1 to 5.

interesting sections of the graph from virtual cores 13-20 and
30-32 that starts appearing in this test and subsequent tests.
There is uncontrolled workload apparent in these sections.

Halfway through our tests, depicted in Fig. 4, our control-
ling efforts remain successful. The workload from controlled
servers on their virtual cores is much higher than the rest of
the cores. Although, the interesting trend discovered within
the last graph is now more evident. All of the uncontrolled
virtual cores have a much higher load when compared with
previous tests. Uncontrolled cores 13-17 and 30-32 still have
the most outstanding readings.

Our final test (Fig. 5) shows more of the same. However,

Fig. 5. 10 Minecraft server threads running on separate virtual cores 1 to 10.

2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:25:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. System workload during each test configuration (10 in total), and the baseline for a point of reference.

uncontrolled cores are now displaying a substantial amount of
load, even when compared to controlled cores. The average
load of uncontrolled cores is 30.43%, while controlled cores
average 64.45%.

A forest graph (Fig. 6) was created to show contrast between
all test configurations. The uncontrolled cores display an
upward trend of workload as the number of active Minecraft
servers increases. The middle and end sections of the cores
discussed previously still have unusually high workloads when
compared to others of the same nature. However, they too
display the same upward trend. These uncontrolled workloads
were consistent throughout the polling of CPU data. For
example, average standard error of the readings of uncontrolled
cores is quite low: 1.91 in Fig. 5 and 3.03 in Fig. 4.

IX. FUTURE WORK

Our future work will be related to Minecraft and other
game servers performance investigation within Rocket under
CoreOS and Docker’s Containers.

The game servers can be dynamically deployed based on
the workload of actively running host machines. With the use
of existing container, sand boxing, and virtualization software,
this deployment process is able to be streamlined. Investigation
of using Docker containers to achieve that is now a priority.
Games with similar technical architecture to Minecraft will be
considered for further exploration in automated stress testing.
If a game has an openly documented networking protocol,
there are prospects for automated stress testing using custom
bots.

X. CONCLUSION

Experiments with the new Mineflayer NodeJS Bot combined
with a custom game server deployment procedure yielded not
only consistently predictable performance measures, but also
demonstrated the effect of adding more than one Minecraft
game server on a host machine. The compounding workload
of the uncontrolled threads of n concurrent, active Minecraft
servers can adversely affect the next deployed on the same
host, since workload is evidently not evenly distributed across
the virtual cores. Further testing to find performance ceilings
needs to be conducted as a result. These limits also need to be
taken into consideration when forecasting future performance

needs on the fly. Now that we have reliable metrics and
a deeper knowledge of the workload that Minecraft servers
expose to their hosts, this data can be used for determining the
future ampleness of existing infrastructures that host Minecraft
servers.

For game server hosting companies of any kind, staying
ahead of the curve of player-base growth by intelligently
deploying resources can greatly increase player experience and
overall satisfaction. In the age of distributed computing and
massive server farms, these companies must take advantage of
smarter deployment solutions or they risk being left behind.

XI. ACKNOWLEDGMENT

The research project was supported by NSERC’s grant
CCI ARD Level 1, 465659-14: GPN-Perf: “Investigating
performance of game private networks” & CCI ARD 2,
477506-14: GPN-Perf2: “Game private networks and game
servers performance optimization” in 2016–2017.

The authors are grateful to the anonymous referees and
the anonymous reviewers for their helpful feedbacks which
improved the quality of the paper.

REFERENCES

[1] T. Alstad, J. R. Dunkin, S. Detlor, B. French, H. Caswell, Z. Ouimet,
and Y. Khmelevsky., “Game network traffic emulation by a custom
bot.” in 2015 IEEE International Systems Conference (SysCon 2015)
Proceedings, ser. 2015 IEEE International Systems Conference. IEEE
Systems Council., April 13-16 2015.

[2] P. A. Branch, A. L. Cricenti, and G. J. Armitage, “An ARMA (1, 1)
prediction model of first person shooter game traffic,” in Multimedia
Signal Processing, 2008 IEEE 10th Workshop on. IEEE, 2008, pp.
736–741.

[3] A. L. Cricenti and P. A. Branch, “A generalised prediction model of first
person shooter game traffic,” in Local Computer Networks, 2009. LCN
2009. IEEE 34th Conference on. IEEE, 2009, pp. 213–216.

[4] Q. Zhou, C. Miller, and V. Bassilious, “First person shooter multiplayer
game traffic analysis,” in Object Oriented Real-Time Distributed Comput-
ing (ISORC), 2008 11th IEEE International Symposium on, May 2008,
pp. 195–200.

[5] W. Doherty and A. Thadhani. (1982) The economic value of rapid
response time (IBM Technical Report GE20-0752-0). [Online]. Available:
http://www.vm.ibm.com/devpages/jelliott/evrrt.html

[6] Andrewrk. (2016) Prismarinejs/mineflayer-navigate. GitHub. [Online].
Available: https://github.com/PrismarineJS/mineflayer-navigate

2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:25:41 UTC from IEEE Xplore. Restrictions apply.

