
Gaming Network Delays Investigation and
Collection of Very Large-Scale Data Sets

Ben Ward, Youry Khmelevsky∗
Computer Science, Okanagan College, Canada

Emails: ben.neil.ward@gmail.com
ykhmelevsky@okanagan.bc.ca

∗Also Affiliated with UBC, Kelowna, Canada
†Also Affil. with LACL, Paris-Est Créteil, France

Gaétan Hains†
Huawei, France R&D Centre, Paris
Email: gaetan.hains@huawei.com

Rob Bartlett, Alex Needham and
Tyler Sutherland

WTFast, Kelowna, BC Canada
Emails: {rob, alex, ty}@wtfast.com

Abstract—The WTFast’s Gamers Private Network (GPN R©) is
a client/server solution that makes online games faster. GPN R©

connects online video-game players with a common game ser-
vice across a wide-area network. Online games are interactive
competitions by individual players who compete in a virtual
environment. Response time, latency and its predictability are
keys to GPN R© success and runs against the vast complexity of
internet-wide systems.

We have built an experimental network of virtualized GPN R©

components so as to carefully measure the statistics of latency
for distributed Minecraft games and to do so in a controlled
laboratory environment. This has led to a better understanding of
the coupling between parameters such as: the number of players,
the subset of players that are idle or active, the volume of packets
exchanged, the size of packets, latency to and from the game
servers, and time-series for most of those parameters.

In this paper we investigate specific game traffic connection
types and show how we could collect very large-scale data sets
of gaming metadata to control gaming network performance in
real time. Such investigation and conducted experimentations will
improve quality of service for GPN R© systems and their reliability.

I. INTRODUCTION

The “GPNPerf” (2014-2015) project has built a laboratory
version of a Games Private Network R© (GPN) that is used for
extensive and controlled-environment experiments to investi-
gate the conditions of low and stable latency in online games.
Experiments conducted since 2014 with the Minecraft network
game have produced an ever-increasing quantity, quality and
variety of measurements.

Our key objective was to understand the evolution of
network traffic volume, latency of network + game server
responses and game server CPU loads. Those target variables
are measured against a mixture of:

• Time (as time series in minutes or seconds)
• Number of server VMs
• Number of physical cores/CPUs to run the servers
• Number of human game players
• Number of artificial (bot) game players
• Game-idleness or action of the players
Initial analysis published in 2015 led to the explanation

of most measurement’s average and standard-deviation values
[1]. Precisely because our experiments are controlled, the
measured time-series are constant or almost flat lines with a
degree of noise that accounts for standard deviations of a few

percent to 10% or 20%. The possible variation in game envi-
ronment and server configuration are not mixed within those
measurements but rather explored with multiple experiments,
each one having a fixed environment and server configuration.
This allows mapping the multi-dimensional space of game
evolutions in a rational manner.

One experimental dimension that cannot be covered by
our laboratory network is internet-scale measurements. To
compensate for that lack of scale, the “GPNPerf2” project
(2016-2019) is collecting a very large collection of meta-data
of game network statistics.

To this end we introduce in this paper the data collector
that will allow us to gather internet traffic performance data
from hundreds and potentially thousands of networking hosts,
served by hundreds of thousands of game servers in realistic
online game environment. Once the data is completely ana-
lyzed it will lead to the exploration of specific scenarios and
in particular those that lead to network overload or bottleneck
(unlikely with games but important for general applications)
as well as dynamic strategies for reinforcing GPN reliability
and low-latency.

The next sections summarize existing and relevant works in
the area of game networks, our study of existing platform and
tools for the data collector’s implementation, its design, im-
plementation and measurements that allow us to conclude that
it is a top-performance tools for collecting massive amounts
of client-to-game-server network statistics.

II. EXISTING WORKS

Predictable and sub-second response time has long been
a key concern for interactive computer systems [2]. For a
majority of video games this is an obvious requirement that
modern hardware has satisfied, despite a continuous rise in
graphics and interaction quality. A video game network is a
distributed set of apparatus which are capable of exhibiting an
interactive single identity game as defined in a patent dated
1986 [3]. The requirements for response time are even more
stringent in this context and in addition to inevitable network
latencies, the on-line service’s computers themselves introduce
latencies, typically increasing as the number of active users
increases [4]. The work described here is an experimental
analysis of the conditions for satisfying this key requirement,

978-1-5090-4623-2/17/$31.00 ©2017 IEEE
Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:25:06 UTC from IEEE Xplore. Restrictions apply.

namely low and predictable response time for a game network
faced with a scalable number of players.

The last decade had seen a growing interest in tackling this
problem. Some researchers like Iimura, Jardine and co-authors
have proposed peer-to-peer architectures for multiplayer online
video games [5], [6], this with the intention of reducing the
bandwidth and processing requirements on servers. This can in
theory provide better scaling but opens the game to additional
cheating, since players are responsible for distributing events
and storing state. Pellegrino et al. [7] have then proposed a
hybrid architecture called P2P with central arbiter. The band-
width requirements on the arbiter are lower than the server of a
centralized architecture. Like many non-functional properties
of online services (security, scalability, reliability etc.) the
choice between centralization and distribution is not one that
can be given a definitive answer. Our work concentrates on a
logically centralized architecture, its potential for predictability
and scalability of the server and router (“arbiter”) performance.
Other work [8] has studied the same performance problems
in the presence of mobile player nodes. Despite its clear
importance for the future, this line of study appears even less
mature than the P2P approach.

Zhou, Miller, and Bassilious [9] have made the obvious but
central observation that Internet delay is important for FPS
games because it can determine who wins or loses a game.
Many games’ mechanics are time sensitive, but it is the time
the information reaches the server that matters, not the time the
player actually pushes the button. Our experiments measure
packet size and inter-packet times or traffic volume as they
have in their statistical model. Those authors’ investigation
also took into account the effects of other Internet traffic. But
our study will exclude those effects precisely because we wish
to isolate the scalability and load-resistance of the server and
routing modules.

Claypool and Claypool [10] have observed that Internet
latency’s effect is strongest for games with a first-person
perspective and a changing model. The work we describe
here takes this into account by experimenting with the game
Minecraft, which is first-person and has changing game envi-
ronments.

More recent studies [11], [12] of first-person shooter games
have modelled time series behaviour of game traffic and
tested the model on up to eight different games. According
to our previous comment, such a comparative study would
not have allowed us to get very stable load measurements,
hence our choice of a single first-person game. Indeed the
study of Wu, Huang and Zhang [13] shows that the server-
generated traffic has a tight relationship with specific game
design, again from our point of view confirming the need for
precise measurements of a given architecture on a single game.
Hariri et al. go even further in this line of thought by designing
a model of the player’s activity to extract traffic patterns [14].
Such a representation is beyond the scope of this paper but
is certainly relevant and its combination with our conclusions
should be the object of future work.

A study of different first-person games shows that the client

traffic is characterized by an almost constant packet and data
rate [15]. The study found that the average interpacket time for
client to server traffic to be 51ms for the game being studied.
Our new bot can send the action packets at 50ms intervals [1].

Our research mostly concentrates on the servers’ perfor-
mance optimization, additionally to the network traffic analysis
[16] and design and implementation of the custom bot for
Minecraft [1]. As it was shown in [17] the bottleneck in
the server is both game-related as well as network-related
processing (about 50%–50%). In our research we investigated
the highest possible workload for the CentOS 6.5 virtual server
by utilizing our custom based bot for Minecraft.

Some authors discuss interactive online games, especially
ones related to the first person shooter or FPS [11], [12] and
network traffic for such games [9]. They investigate network
impact on the games and realistic traffic generators. In our
infrastructure our aim was not just to emulate 2 or 3 players,
but 100 and even 1000 and more players. This is important
for gaming companies, because as it is shown in [14] online
games become major contributors to Internet traffic. Latency
is the another challenge for online games, as it’s reported in
[10], [7] and [18] and it’s an important factor of an online
gaming experience. We built our infrastructure to emulate
artificial latencies in the emulated traffic [16]. In [6] massively
multiplayer online games with a client-server architectures and
peer-to-peer game architectures are investigated. The authors
developed a hybrid game architecture to reduce game server
bandwidth. In [5] authors even proposed to implement a zoned
federation model for the multi-player online games trying to
reduce workloads of the centralized authoritative game servers.
A US 5956485 patent [4] describes how to link multiple
remote players of real-time games on a conferenced telephone
line, which could reduce latency for the game players.

In the technical report from IBM [2] it was demonstrated
that rapid system response time, ultimately reaching subsecond
values and implemented with adequate system support, offers
the promise of substantial improvements in user productivity
and it’s even better to implement subsecond system response
for their own online systems. They mentioned that not so many
online computer systems are well balanced. They divided
system response time for two large groups: computer response
time and communication time, which are both critical for the
game players user experience as well.

In [8] the authors discuss online multiplayer gaming issues
in wireless networks, which is an additional problem related
to the game players experience on the Internet. These issues
are not covered in the current paper. On the other hand, we
experienced packet loss in our infrastructure too. In paper
[13] the authors investigated a multiplayer on-line game traffic
including modelling traffic in mobile networks.

III. SPECIFIC GAME TRAFFIC CONNECTION TYPES

A core concern of GPNPerf2 is the analysis of GPN traffic
(see Table I and Table II) to characterize the statistical- and
time variation of message latency. Those parameters is both
the hearth of the business model and the key qualify feature of

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:25:06 UTC from IEEE Xplore. Restrictions apply.

TABLE I
ONLINE GAME SYSTEM ARCHITECTURES [19]

Peer-to-Peer Peer-to-Peer (P2P) systems where game players
interact directly with each other. They have
not been very popular in recent systems.

Client-Server Client-Server systems where a set of
logically central servers store the game state and
provide most operations except player interaction
and complex view rendering (in a local client).
This architecture has been very popular recently.

P2P Client-Server Peer-to-peer\Client-Server hybrid (lockstep)
Hybrid Hybrid types of implementations.

Cloud Gaming Cloud Gaming where the client is a very thin
piece of software are almost all functions
are realized by the server. Like all cloud
platforms, services or software, its advantages
are in easy deployment, no installation for the
players etc. But its disadvantages lie in heavier
computation and communication. In [19]
bandwidth requirements multiplied by 10 to 1000
for cloud games by comparison with traditional
client-server games.

games networks. Indeed Saldana and Suznjevic [19] in QoE
and Latency Issues in Networked Games have summarized
existing literature that, among other things, highlights the
insensitivity of most online games to bandwidth while con-
firming that latency is critical to most games except perhaps
games of strategy.

In the rest of this section we summarize those concepts and
results of [19] that define precise measurement and modelling
objectives for GPNPerf2.

a) Game genres i.e. types of online games:
• First Person shooters (FPS): Games such as Call of Duty

where the user sees himself as an armed warrior evolving
alone or among a team of a few dozen members to
eliminate virtual enemies. Average time between firing
and death of the enemy is about 161 ms for the most
popular FPS games. Studies have confirmed that such
games require very low latencies.

• Massively Multiplayer Online Role Playing Games
(MMORPG) are games where thousands of players,
merge with artificial entities into a complex virtual world.
They cooperate or fight each other so that, (simulated)
firearm exchanges happen and put a constraint on latency
as in FPS games but at a lesser frequency by the nature
of the game. The element of tactics is also important in
such games so virtual-world coherence is critical.

• Real Time Strategy (RTS) games where a dozen players
share a virtual worlds where they build “civilizations” i.e.
geometric and slowly-dynamic structures.

• Multiplayer Online Battle Arena (MOBA) games, a
special-case of RTS where two teams try to conquer a
battlefield.

• Sports games that simulate car racing or team sports. In
vehicle racing it is possible that latency can be critical
while team- or other realistic sports involve the simulation
of balls, running humans and other objects that are very
slow relative to the “firearms” and “bullets” of FPS
games.

In [19] surveys that for FPS games, a one-way delay of 80
ms can be acceptable for most game users. Low latency con-
vinces users to join the game, which confirms its importance
for game-related business that is aimed at latency-reduction or
latency-stabilization.

For MMORPG games, players started rating the game
quality from “excellent” to “good” when one-way latency
raised above 120 ms. When it rose further above 150 ms up to
200 ms, players started leaving their game sessions. The same
phenomenon has been observed when latency in RTS games
rose from 200 ms to 500 ms.

Studies have also shown that experienced players are more
sensitive to those factors than ordinary players.

b) Connection Types: Network games are implemented
with a variety of network connection types.

c) Geographical location: Geographical location of
servers is correlated with latency for obvious reasons of
transmission delays. Many games report the geographical
location of their servers so players connect to the closest ones.
Mapping IP addresses to geographical location is necessary
for experimental and mathematical investigation of the above
questions.

d) Latency reduction: Once empirical and mathematical
tools are built to analyze and predict message latency and
its variance, the results will be used to predict human- and
business-effects in various games. For example player QoE
in specific situations defined by combinations of the above
factors (game genres, connection types, etc). In turn, the effect
of this perceived or real QoE can be correlated to game session
durations, popularity of the game service etc, and in the end
of business objectives and economic factors for game players
and GPN providers.

Once this analysis is put in place it will be natural to apply
latency-reduction techniques such as zoning and mirroring.
Zoning partitions the virtual world into geographical areas
called zones, handled independently by separate machines.
Mirroring, targets parallelization of game sessions with a large
density of players located and interacting within each other’s
geographical vicinity.

e) Methods to enhance QoE: Scalability:

• Logical Sharding: A virtual world spans over multiple
servers.

• Sharding: Multiple instances of separate but identical
virtual servers.

• Zoning: Separable locations in a virtual world are handled
by different servers.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:25:06 UTC from IEEE Xplore. Restrictions apply.

TABLE II
NETWORK GAME SCALING

Peer-to-Peer Connection Type: TCP or UDP
Quality of Experience (QoE) considerations: No server authority (cheating/hacking).
No hardware considerations for game developer.
Game Example(s): StarCraft 1 (1998)
Game Genre(s): RTS

Client-Server Connection Type: TCP or UDP
Description: Clients synchronize to a single source which propagates the synchronization outwards.
QoE considerations: Central server authority for anti-cheating, pay-gate, etc. Ability to deploy dedicated servers

if included with game (LAN parties w/ low latency). Individual players game-client may also act as server
(Game interruption if player leaves).

Game Example(s): Counter Strike, Warcr aft 3, Call of duty, Minecraft
Game Genre(s): FPS, MMORPG, Sandbox

Cloud Gaming Description: Game logic and virtual world rendering occurs server-side and a video stream is sent to the client.
The client only sends commands to the server.

Game Example(s): Playstation Now
Game Genre(s): Game Streaming service

• Mirroring: Distributes a zone load by replicating the
zone on multiple servers. The state of a subset of active
entities is calculated by each participating server and
communicated between servers.

• Instancing: Sharding on a smaller(zone) level.

IV. THE DATA COLLECTOR

To investigate gaming network performance issues our
project requires collecting from upwards of 400,000 client’s
gaming sessions network latency data in order to statistically
analyze and improve their network performance. Using the
open source programming language golang, a data collection
web application (named GPerf2 Collector, or just the collec-
tor), was constructed that is able to accept a vast number
of rapid incoming connections. The collector then transmits
some amount of data to a data store before disconnecting.
This operational information from clients, would first be
authenticated by the collector and then at some point bulk
transmitted to some form of data store as was possible.
Experiments were conducted as to the best way to create and
tear down connections to achieve the optimal cross between
the greatest number of connections and the greatest volume of
data processed in the future. The goal is for the collector to
be able to handle at least one million connections per second.

The collector server generates a number of workers which
listen for incoming TLS connections. When a worker receives
a request it uses a multiplexed handler function to authenticate
the data packet, extracts the information, generates a job object
using the extracted information, and adds the new job object to
the job channel. The job channel is a queue from which objects
are processed and inserted into a bulk Elasticsearch processor
which finally sends a bulk packet of data to a data store. The
server also regularly prints updates on the screen with the
number of connections processed, the incoming connection’s
host and IP address as well as the target Elasticsearch index.

The server has a configuration file that contains general
server operations, profiling options, and Elasticsearch options.

The general server operations involve opening a specific port,
maximum packet size and connection keep alive options. The
profiling options determine the type of profiling the applica-
tion will record which include memory, cpu and blocking.
Elasticsearch options regard functionality of the Elasticsearch
processor and the IP address of the Elasticsearch server
location. Other configuration variables determine the number
of workers and jobs the server will be able to handle.

The server has three changeable variables which vary the
server’s capacity that can be found at the top of the main
function. MaxQueueSize sets the number of jobs that the job
channel can hold. MaxWorkers dictates the number of workers
that are generated to listen for connections. The more workers
there are the more connections that can be handled in a shorter
period of time; however, adding more workers will quickly
consume more resources.

V. FRAMEWORK BENCHMARKING

The initial performance comparison of web frameworks
for the use of developing the Collector was obtained from
TechEmpower [20], an online organization that performs stan-
dard benchmarking tests on web frameworks. Their round 12
tests, which concluded February 25th of 2016, were hosted
on a static environment which was created according to
best practices and community input. Each instance of crowd
submitted frameworks are implemented and go through a
variety of standard tests for comparative analysis. The frame-
works evaluations are comprised of JSON serialization, single
query, multiple queries, fortunes, data updates and plaintext.
TechEmpower’s benchmark framework used ‘wrk’, a load
simulator, to send a request packet containing 20 updates at
a rate limited only by the infrastructure and framework. The
test results for each web framework are contrasted to observe
performance results.

The GPERF2 project decided on Aliaksandr Valialkin’s
fasthttp web framework implemented in golang based off of
the results from TechEmpower’s round 12 test results. Fasthttp

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:25:06 UTC from IEEE Xplore. Restrictions apply.

data update was able to handle 3,959 requests (20 update
queries) over 15 seconds. The update request’s average latency
was 62.9 ms with a standard deviation of 62.3 ms and a
maximum of 893.7 ms. These results as well as the plaintext
test results were the closest to resembling what we wanted for
performance. Further information regarding test frameworks
utilized are shown below in Table III.

TABLE III
TECHEMPOWER TEST ENVIRONEMENT

Hardware Dell R720xd dual Xeon E5-2660 v2
(40 HT cores) with 32 GB memory;
database servers equipped with SSDs
in RAID; switched 10-gigabit Ethernet
i7: Sandy Bridge Core i7-2600K workstations
with 8 GB memory (early 2011 vintage);
database server equipped with
Samsung 840 Pro SSD; switched gigabit Ethernet
EC2: Amazon EC2 c3 large instances
(2 vCPU each); switched gigabit Ethernet
(m1.large was used through Round 9)

Operating System Ubuntu Linux 12.04 64-bit
Windows Server 2012 64-bit

Databases MySQL
MongoDB
PostrgeSQL

LoadSimulator Wrk

Tests JSON serialization
Single query
Multiple queries
Fortunes
Data updates
Plaintext

We implemented our own tests to validate and benchmark
our fasthttp application. The results of our tests are shown
in Table IV and Table V (see the first line with the GPerf2
results), where we have almost 30 times more requests # in
15 seconds and much less average latency to compare with
the other frameworks. The Plaintext Test in Table V is shown
just for the comparison only.

Fig. V.1 shows the number of requests the frameworks are
able to handle for plaintext HTTP GET requests. The results of
our test can be seen in the tables. Our collector web application
is shown to be considerably slower than fasthttp’s implemen-
tation of 6 million requests per 15 seconds by a factor of 10.
This can be explained by using the wrk benchmarking tool on
a lower powered computer over a 100 Mbps switch. Fig. V.2
further shows that the latency is quite low much like fasthttp.
The system is actually faster however the tests were done on
the same network that the collector which explains how much
faster the system is. Fig. V.3 shows the number of database
queries that the frameworks can handle. Due to utilizing a

Fig. V.1. Plaintext Requests Comparisons

Fig. V.2. Plaintext Latency Comparisons

buffered method to accept database queries we are able to
accept queries at a higher rate as compared to the frameworks
shown here. This however is a trade off as we run into buffer
bloat (latency created due to network hardware buffering too
much data) which can slow down the system if the collector
receives requests at a faster rate than it can execute them. This
is shown in Fig. V.4 where the overall latency is lower but the
standard deviation is 50%.

Future tests of the system will utilize remote benchmarking
machines to further emulate the test environment executed by
TechEmpower as well as performing longer tests to show the
long term functionality and determine what affects bufferbloat
will have on the networked machines.

VI. CONCLUSION

In this work we have built the elements and general structure
of a web application that accepts requests to insert data to a
database from clients. The framework utilized was determined

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:25:06 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
UPDATE TEST

Framework Language # of requests (in 15 sec) Average latency (ms) σ (SD) (ms) Max (ms) Request Errors
GPerf2 Go 98816 26.86 36.5 279.23 256.9

Fasthttp-postgresql Go 3959 62.90 62.30 893.70 0
wt C++ 3583 67.60 28.00 731.70 0

Wt-postgresql C++ 3344 74.30 27.00 146.50 0
mojolicious perl 3157 78.00 37.70 285.50 101

Redstone-postgresql dart 3148 76.80 25.80 179.20 0
nodejs JavaScript 2862 84.00 11.70 152.60 0

Http-kit Clojure 2727 88.00 7.70 124.10 0
dart Dart 2539 97.70 37.00 329.40 0

hhvm Php 2472 114.80 66.50 714.60 0
servlet3-class Java 2298 106.60 18.00 214.20 0

ninja-standalone Java 2165 108.10 140.60 700.20 3006

TABLE V
PLAINTEXT TEST

Framework Language # of requests (in 15 sec) Average latency (ms) σ (SD) Max Request Errors
GPerf2 Go 456756 9.09 10.71 229.35 0

Fasthttp-postgresql Go 6371358 47.5 8.2 1590 0
wt C++ 210989 679 915.3 3620 0

Wt-postgresql C++ N/A
mojolicious perl 25960 3060 2060 6920 0

Redstone-postgresql dart 142724 493.5 226.4 2020 0
nodejs JavaScript 314418 710.4 1830 7960 0

Http-kit Clojure 107446 213 216.1 856.3 0
dart Dart 324392 188.9 107.9 997.2 0

hhvm Php 15074 4220 1010 7320 0
servlet3-class Java 2314918 4410 6770 14890 0

ninja-standalone Java 38005 1070 235.4 1590 0

Fig. V.3. Database Insert Request Comparisons

through tests employed by TechEmpower which were then
emulated to confirm that the framework performed in the way
described. It can be seen from the data that the tests were
successful. The current performance measurements indicate
that our collector outperforms other solutions for collecting
similar client-server statistics. It should lead to the collec-
tion of massive datasets whose analysis will improve the
performance of GPNs and their reliability against fluctuating
internet- and online game conditions.

Fig. V.4. Database Insert Latency Comparisons

ACKNOWLEDGMENT

The research project results described in this paper were
achieved with support from Computer Science department at
Okanagan College and by the NSERC of Canada CCI ARD
Level 2 grant in 2016: “GPN-Perf2: Game private networks
and game servers performance optimization”. This research is
conducted in partnership with WTFast Inc.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:25:06 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] T. Alstad, J. R. Dunkin, S. Detlor, B. French, H. Caswell, Z. Ouimet,
and Y. Khmelevsky., “Game network traffic emulation by a custom
bot.” in 2015 IEEE International Systems Conference (SysCon 2015)
Proceedings, ser. 2015 IEEE International Systems Conference. IEEE
Systems Council., April 13-16 2015.

[2] W. Doherty and A. Thadhani. (1982) The economic value of
rapid response time (IBM Technical Report GE20-0752-0). [Online].
Available: http://www.vm.ibm.com/devpages/jelliott/evrrt.html

[3] D. H. Sitrick, “Video game network. United States Patent number
4,572,509,” Feb. 25, 1986.

[4] S. G. Perlman, “Network architecture to support multiple site real-time
video games. United States Patent number 5,586,257,” Dec. 17, 1996.

[5] T. Iimura, H. Hazeyama, and Y. Kadobayashi, “Zoned federation
of game servers: A peer-to-peer approach to scalable multi-player
online games,” in Proceedings of 3rd ACM SIGCOMM Workshop
on Network and System Support for Games, ser. NetGames ’04.
New York, NY, USA: ACM, 2004, pp. 116–120. [Online]. Available:
http://doi.acm.org/10.1145/1016540.1016549

[6] J. Jardine and D. Zappala, “A hybrid architecture for massively
multiplayer online games,” in Proceedings of the 7th ACM SIGCOMM
Workshop on Network and System Support for Games, ser. NetGames
’08. New York, NY, USA: ACM, 2008, pp. 60–65. [Online]. Available:
http://doi.acm.org/10.1145/1517494.1517507

[7] J. D. Pellegrino and C. Dovrolis, “Bandwidth requirement and state
consistency in three multiplayer game architectures,” in Proceedings
of the 2Nd Workshop on Network and System Support for Games,
ser. NetGames ’03. New York, NY, USA: ACM, 2003, pp. 52–59.
[Online]. Available: http://doi.acm.org/10.1145/963900.963905

[8] P. Ghosh, K. Basu, and S. K. Das, “Improving end-to-end quality-of-
service in online multi-player wireless gaming networks,” Computer
Communications, vol. 31, no. 11, pp. 2685–2698, 2008.

[9] Q. Zhou, C. Miller, and V. Bassilious, “First person shooter multiplayer
game traffic analysis,” in Object Oriented Real-Time Distributed Com-
puting (ISORC), 2008 11th IEEE International Symposium on, May
2008, pp. 195–200.

[10] M. Claypool and K. Claypool, “Latency and player actions in online
games,” Commun. ACM, vol. 49, no. 11, pp. 40–45, Nov. 2006.
[Online]. Available: http://doi.acm.org/10.1145/1167838.1167860

[11] P. A. Branch, A. L. Cricenti, and G. J. Armitage, “An ARMA (1, 1)
prediction model of first person shooter game traffic,” in Multimedia
Signal Processing, 2008 IEEE 10th Workshop on. IEEE, 2008, pp.
736–741.

[12] A. L. Cricenti and P. A. Branch, “A generalised prediction model of first
person shooter game traffic,” in Local Computer Networks, 2009. LCN
2009. IEEE 34th Conference on. IEEE, 2009, pp. 213–216.

[13] Y. Wu, H. Huang, and D. Zhang, “Traffic modeling for massive
multiplayer on-line role playing game (MMORPG) in GPRS access
network,” in Communications, Circuits and Systems Proceedings, 2006
International Conference on, vol. 3, June 2006, pp. 1811–1815.

[14] B. Hariri, S. Shirmohammadi, and M. R. Pakravan, “A hierarchical
HMM model for online gaming traffic patterns,” in Instrumentation and
Measurement Technology Conference Proceedings, 2008. IMTC 2008.
IEEE. IEEE, 2008, pp. 2195–2200.

[15] J. Färber, “Traffic modelling for fast action network games,” Multimedia
Tools and Applications, vol. 23, no. 1, pp. 31–46, 2004.

[16] T. Alstad, J. R. Dunkin, R. Bartlett, A. Needham, G. Hains, and
Y. Khmelevsky, “Minecraft computer game simulation and network
performance analysis,” in Second International Conferences on Com-
puter Graphics, Visualization, Computer Vision, and Game Technology
(VisioGame 2014), Bandung, Indonesia, November 2014.

[17] A. Abdelkhalek, A. Bilas, and A. Moshovos, “Behavior and
performance of interactive multi-player game servers,” Cluster
Computing, vol. 6, no. 4, pp. 355–366. [Online]. Available:
http://dx.doi.org/10.1023/A:1025718026938

[18] T. Jehaes, D. De Vleeschauwer, T. Coppens, B. Van Doorselaer, E. Deck-
ers, W. Naudts, K. Spruyt, and R. Smets, “Access network delay in
networked games,” in Proceedings of the 2nd workshop on Network
and system support for games. ACM, 2003, pp. 63–71.

[19] J. Saldana and M. Suznjevic, QoE and Latency Issues in Networked
Games. Singapore: Springer Singapore, 2015, pp. 1–36.

[20] “Web framework benchmarks,” November 2016. [Online]. Available:
https://www.techempower.com/benchmarks/

[21] H. Al-Bahadili, Simulation in Computer Network Design and Modeling:
Use and Analysis: Use and Analysis. IGI Global, 2012.

[22] B. Marchenko and S. Leonid, “Liniear stochastic processes and thier
applications (in russian).” Naukove Dumka, 1975.

[23] K.-T. Chen, P. Huang, C.-Y. Huang, and C.-L. Lei, “Game
traffic analysis: An mmorpg perspective,” in Proceedings of
the International Workshop on Network and Operating Systems
Support for Digital Audio and Video, ser. NOSSDAV ’05. New
York, NY, USA: ACM, 2005, pp. 19–24. [Online]. Available:
http://doi.acm.org/10.1145/1065983.1065988

[24] Y. Khmelevsky, “Parameterization and Statistical Analysis of Stochastic
Signals in Biological Research,” Abstract to the Ph.D. thesis, The
Institute of Simulation Problems in Power Industry, Kyiv Scientific
Typography at Scientific Book Publisher, Kyiv, Ukraine, September
1992.

[25] E. Westrub and F. Pettersson, “Using the go programming language in
practice,” Master’s thesis, Lund University, 2014.

[26] S. M. Ross, Introduction to probability models. Academic press, 2014.
[27] ——, Introduction to probability and statistics for engineers and scien-

tists. Academic press, 2004.
[28] S. Mallick, G. Hains, and C. S. Deme, “An alert prediction model for

cloud infrastructure monitoring,” 2013.
[29] M. AB. Minecraft home page. [Online]. Available: https://minecraft.net/
[30] COSC 470 SW Engineering Capstone Project Course Team,

“A short video clip with 50 bots running in a square.”
Computer Science Department, Okanagan College. [Online]. Available:
https://www.youtube.com/watch?v=KYrIO7yWekw

[31] Gamepedia. Infiniminer. [Online]. Available: http://tinyurl.com/o5plsbk
[32] GitHub, Inc. DarkStorm652/DarkBot. Minecraft thin

client and automation framework. [Online]. Available:
https://github.com/DarkStorm652/DarkBot

[33] GitHub Inc., Steveice10/MCProtocolLib. A library for com-
munications with a minecraft client/server. [Online]. Available:
https://github.com/Steveice10/MCProtocolLib

[34] C. Limited. Mcmyadmin 2 the minecraft control panel. [Online].
Available: https://www.mcmyadmin.com.

[35] Wikipedia. Minecraft. [Online]. Available:
http://en.wikipedia.org/wiki/Minecraft

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:25:06 UTC from IEEE Xplore. Restrictions apply.

