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Abstract—The COVID-19 pandemic has had a major impact
on the usage of various utilities. To assess the impact, this
research explores the (baseline) estimation of hourly utility
usage if the pandemic did not happen. Using usage data from
Harris SmartWorks, various machine learning algorithms are
implemented to show that they are effective in modelling hourly
usage patterns, calendar effects, as well as “lingering” effects of
the exogenous factors and produce accurate results.

Index Terms—utility usage, time series, machine learning, deep
learning applications, big data

I. INTRODUCTION

The COVID-19 pandemic is impacting personal, family, and
business environments in general and utility usage in particu-
lar. For some municipalities and cities across North America,
residential utility usage increased during the lockdown [1], [2].
The higher energy consumption reflects the increased use of
computing such as videos streaming and conferencing due to
work-from-home and learning-from-home activities, as well as
other stay-at-home activities such as food preparation. A study
last year has indicated that residential refrigerators are working
overtime due to the increased storage of warm leftovers being
placed in the appliance [3].

As providers of critical infrastructure, the utility industry
plans for many foreseeable hazards, but it is less likely
that health emergencies, such as the COVID-19 crisis, are
planned for. There is a need to support utility companies in
having the appropriate data available for continuity plans that
are adaptable to fully address the fast-moving and unknown
variables of an outbreak such as COVID-19. Therefore, it is
important to quantify the impact of COVID-19 on utility usage
to fulfill this business need.

In this paper, we present the approach to measuring the
impact of COVID-19 by estimating, using historical data up
to March 2021, utility usage during the pandemic period if
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COVID-19 did not happen. These baseline estimates could
then be compared with the corresponding actual usages during
the pandemic periods to arrive at estimates of the pandemic
impact. Simply put, the impact of COVID-19 on usage could
be estimated as the difference between the actual usage and
the estimated (baseline) usage derived from the historical data
before the pandemic.

The approach of estimating the baseline usage using his-
torical data was implemented through a number of machine
learning models and on several utility data sets in electricity,
water, gas, and steam. Given that results from these data sets
were similar, we will, in this paper, focus on the work with
one particular electricity data set in the United States.

Note that the work presented here was conducted as part of
the applied research and capstone projects at Okanagan and
Langara Colleges by faculty and students with support from
industry [4]–[6], [6]–[9], [9]–[21], [21]–[24].

II. LITERATURE REVIEW

In the past, many studies use the traditional modelling tools,
such as Autoregressive Integrated Moving Average (ARIMA)
models, to produce predictions for a time series. This approach
has been applied in many fields such as medicine, climate
research, and energy consumption research [25]–[29]. These
studies used trends and patterns of the time series of interest
to produce predictions for the future. Some articles also used
the combination of a time series model with other statistical
techniques, for example, integrating the time series models
with smoothing techniques, for the development of forecasts
[30], [31].

Apart from the traditional time series analysis, the employ-
ment of a regression model is another option [28], [29]. A re-
gression model allowed researchers to take relevant predictors
of the forecast values into account. However, it is challenging,
from a modelling standpoint, to incorporate historical trends
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and patterns of the predicted variable as independent variables
in a regression setting.

Recently, researchers have started to use various machine
learning algorithms for time series analysis. For example,
the Support Vector Regression (SVR) algorithm was used to
forecast individual electricity consumption [32]. A number
of researchers also used ensemble methods, especially the
boosting algorithms, to create predictive models with a high
level of accuracy using time series data [27], [30].

In addition, the multiple layer perceptron (MLP) algorithm
is commonly used in this area [27], [30], [33], [34]. MLP
can explore non-linear associations between numerical or
categorical predictors and the variable of interest, but it cannot
“learn” directly the autocorrelation pattern of the dependent
variable over a period of time. In this regard, in a recent study a
transformation technique was used on the calendar data so that
a MLP model can take patterns over time into consideration
and therefore incorporate the calendar effect [34].

It is also quite common to use a Long Short-Term Memory
(LSTM) algorithm [27], [35], [36]. As a type of Recurrent
Neural Network (RNN), its characteristic of feedback connec-
tion allowed it to process data in sequence, a key feature of a
time series data set.

III. METHODOLOGY

As mentioned, the impact of COVID-19 on energy con-
sumption can be evaluated as the difference in utility usage
under the COVID-19 environment (actual and observed) and
the usage that we would see if the COVID-19 pandemic did not
happen (not observable and to be estimated.) This difference
can be estimated by comparing the actual utility usage under
the pandemic and the usage estimates if the pandemic did not
exist, the so-called baseline usage. The baseline usage is not
observable but can be estimated using data collected before
the pandemic. It is the main objective in this research.

A statistical time series method such as ARIMA is a
reasonable approach in generating estimates for the baseline
usage. However, other exogenous factors, such as temperature
and relative humidity, should be considered as these factors
also affect energy usage [37], [38]. As well, machine learning
models are considered better candidates in modelling usage
for their ability to allow for explicit specification of the
usage patterns and other calendar effects such as holidays
and weekends. Other features, such as maximum or minimum
temperature for the day, could also be generated and specified
from the exogenous factors so as to specify the possible
“lingering” effect of the exogenous factors.

A. Machine Learning Models for Utility Usage Forecasts

This research considered the following machine learning
algorithms for predicting hourly electricity usage: random
forest regression (RFR), artificial neural nets (ANN), and
support vector regression (SVR). As usual, we experimented
with different combinations of features and hyper-parameters
for each algorithm so as to maximize accuracy. Long-Short
Term Memory (LSTM), along with the traditional multiple

layer perceptron (MLP), were the two implemented as the
competing ANN algorithms.

With the exception of the SVR algorithm, results from these
algorithms are stochastic in nature due to the probabilistic
routines (the re-sampling process in RFR and the gradient
descent process in ANN) used within them. To ascertain the
stability of the predictive power of the models developed using
these algorithms, each model developed was run ten times. The
mean of the performance metrics over the ten runs were then
used for the evaluation of the models.

B. Description of the Data Set

The data set used in this research is collected by Harris
SmartWorks. Harris SmartWorks manages the data generated
hourly by millions of utility meters for approximately 30 utility
providers in Canada as well as over 100 in North America
and worldwide. In this applied research project, this usage
and operational data with other environmental data was used
to estimate the baseline usage.

The data set in this research is about electricity usage in
a part of United States from May 28, 2018 to March 10,
2020. This data set originally has an hourly time stamp with
usage and was augmented by the corresponding hourly data on
temperature and relative humidity from the same geographic
area.

Data collected from May 28, 2018 to June 30, 2019 was
used as the training data set for the development of the ML
models. The remaining data, from July 1, 2019 to March 10,
2020, was used as the testing data set to evaluate the estimation
accuracy of the models.

C. Feature Engineering

As in a previous study, a transformation technique could be
used to get the ML models to learn the calendar effect [34]. In
this research, instead of using this transformation technique,
a set of indicator variables for different calendar effects were
created: the month of the year (12 one-up variables), day of
the week (7 one-up variables), hour of the day (24 one-up
variables), whether the day is a weekend (Saturday or Sunday;
1 one-up variable), and whether the day is a holiday (1 one-up
variable).

To model the “lingering” impact of temperature on utility
usage, we used the recorded temperature in the data set to
create the average, lowest, and highest temperature of the day
as well as the average, lowest, and highest temperature of the
previous day. These variables are then used as part of the
feature set in the development of the ML models.

D. Scaling

To ensure uniform unit among all numerical features, we use
either the standardization (refer to Equation 1) or the Min-Max
normalization (refer to Equation 2) technique.

Xstandardized =
X − E(X)

SD(X)
(1)

Xnormalized =
X −Xmin

Xmax −Xmin
(2)
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E. Performance Metrics

Two traditional performance metrics for estimation accu-
racy, Root Mean Square Error and Mean Average Percent
Error, were used in this research. In addition, a third metric
was developed by the project team during the research to better
reflect the needs in measuring estimation accuracy for utility
usage.

1) Root Mean Square Error and Mean Absolute Percent
Error: The root means square error (RMSE) is commonly
used in evaluating the predictive or estimation performance of
models. Equation 3 shows the calculation of this metric.

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi) (3)

The mean absolute percent error (MAPE), which measures
the average percentage of absolute error to the actual value, is
also used in this project. Equation 4 shows the calculation of
MAPE.

MAPE =
1

n

n∑
i=1

|Yi − Ŷi|
|Yi|

(4)

2) Total Absolute Error Percentage: Besides the two tra-
ditional performance metrics, a new metric, called the Total
Absolute Error Percentage (TAEP) was developed by the
project team to measure accuracy of the estimates comparing
to the actuals, taking into account the average magnitude of
the usage. This metric is therefore applicable as a performance
metric for different time series data sets with different mea-
surements and magnitudes. The TAEP metric is calculated as
follows.

TAEP =

∑n
i=1 |Yi − Ŷi|∑n

i=1 Yi
(5)

We used the TAEP metric as a primary metric for model
comparison.

IV. RESULTS

Together with the application of the usual feature engineer-
ing and hyper-parameter tuning techniques, various models
were developed using the algorithms described above. Table
I shows the best models developed for each type of algo-
rithm and the hyper-parameters used. Models developed under
LSTM were deemed to be inferior based on the performance
metrics used and therefore omitted here.

In our experiments, we found that models with standardized
numerical features performed better than those with normal-
ized ones. Therefore, numerical features of the models shown
here were all standardized.

The MLP model has the smallest average TAEP metric over
ten runs. It is considered as the best of these three models even
though it is less “consistent” with largest standard deviation.
However, the upper range of the TAEP metric for this model

TABLE I
PERFORMANCE OF THE BEST FORECASTING MODEL UNDER THE THREE

MACHINE LEARNING ALGORITHMS

Machine Learning
Algorithms

TAEP
over 10 runs

MAPE
over 10
runs

RMSE
over 10
runs

Random Forest
Regression (Trees:
100)

Mean: 6.25
SD: 0.021

Mean:
6.95
SD: 0.03

Mean:
3909
SD: 18.19

Multiple Layer
Perceptron
(2 Hidden Layers:
100-32, relu)

Mean: 5.79
SD: 0.205

Mean:
6.54
SD: 0.17

Mean:
3564.19
SD: 92.13

Support Vector
Regression
(Kernel: rbf,
Gamma: Scale, C: 1)

6.05 6.91 3762.68

* SVR is not stochastic in nature, there is no variation among ten
runs

is likely to be lower than that of the RFR or SVR which is
constant at 6.05. The same can be said using the RMSE and
MAPE metrics. Figure 1 graphically depicts the forecasting
result (rolled up in days) of the MLP model on the testing
data set. The estimated usage (blue line) follows the patterns
of the actual usage well (orange dashed line). It does show,
however, the challenges it has on estimating peak usage.

The TAEP metric and the MAPE are not scale sensitive,
that is, these metrics are not affected by the unit or the
scale of the actual and predicted values. Among all models
shown in Table I, the mean and the standard deviation of
TAEP metric is smaller than those of the MAPE and are
deemed to be more appropriate for comparing utility usage
estimates. For this reason, the TAEP metrics is implemented as
the primary performance metric in Harris SmartWorks’ utility
usage prediction systems.

V. CONCLUSION AND FUTURE WORK

In this research, we demonstrate the promise of using
machine learning algorithms to generate accurate forecasts on
a hourly utility usage time series incorporating relevant ex-
ogenous factors such as temperature and humidity. Comparing
to traditional time series forecasting models, the ML models
allow for the explicit modelling of hourly usage pattern as
well as other calendar effects such as holidays and weekends.
Engineered features, such as maximum or minimum tempera-
ture for the day, could easily be inserted to model the possible
“lingering” effect of the exogenous factors. These advantages
were explored in this research.

Fig. 1 shows the challenge in estimating peak usage which
is critical in energy supply planning and acquisition. Perfor-
mance metrics that accentuate estimation accuracy for peak
usage would be desirable for the development of hourly usage
prediction models.

ACKNOWLEDGMENT

We thank our research student assistants and students in
capstone projects at Okanagan and Langara Colleges who
assisted in the research. We also thank the reviewers of

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:28:51 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Actual versus Forecasting Summarized by Day Under the MLP Model
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