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Abstract—With increasing complexity and volume of collected
data continuing to rise, it is becoming ever more important to
develop systems with high interactability. Businesses with an
interest in big data continue to seek solutions that limit cost while
providing effective, simplified solutions to current issues in data
retrieval. Combined analysis and application of a multi-factorial
system will likely lead to promising results in ease of reporting of
complex data by nontechnical end users. This survey is focused
on natural language processing (NLP) implementations for data
query systems, especially related to massive data sets (1TB+)
in OLTP databases, OLAP databases, and data warehouses. We
are seeking the most up-to-date and effective uses of NLP for
Speech-to-SQL and Text-to-SQL generation, and the most recent
advancements in data warehousing to optimize ELT efficiency
and data retrieval, focusing on the highest performing code
implementations on the Spider and WikiSQL datasets. Many
models, including sequence-to-sequence (seq2seq), sequence-to-
SQL (Seq2SQL), and fuzzy semantic to SQL (F-Semtosql), among
others, are briefly described and compared. As well, recent
advancements in data warehousing technology like multi-disk
buffering in the ELT process and hybrid multi-dimensional
and relational OLAP databases (HOLAPs) are discussed. The
learning gathered here is applied to fill a gap in the current
industrial knowledge base in service of increased efficiency
in data access, retrieval, and reporting in a customer-facing
environment.

Index Terms—Natural Language Processing, Data Query
System, Text-to-SQL, Speech-to-SQL, Deep Learning, Machine
Learning, Human-Machine-Systems, Energy Systems

I. INTRODUCTION

As the size of data sets become massive (1TB+), classic
relational OLTP databases start to lose efficiency for informa-
tion retrieval. OLAP and data warehousing (DW) has become
a popular solution to maintain efficiency for big data. The
structure of data warehouses lend themselves well to handling
complex queries based on aggregating data for reporting
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purposes, often with a business intelligence (BI) tool [1]. With
increasing complexity of business reports necessary to retrieve
the desired information, businesses observe a mirrored, marked
increased in the skill, time, and commitment necessary from
their knowleadge workers and data engineers to generate these
reports. Unsurprisingly, current solutions to these problem
areas are becoming prohibitively expensive and require the
development of speech-to-query solutions with respect to
energy information systems simplifying the report generation
and providing real-time reports to the customers.

Machine learning (ML) has stormed the world, gaining
traction and applicability in almost any imaginable computing
situation. The proportion of end users in industry who know
Structured Query Language (SQL) is relatively small, thus
pinpointing an area for ML to aid in making business de-
cisions. Turning human speech into machine language, known
as NLP, is not a new idea as its first development began
in the 1950s. Through advancements in computational power
and the development of increasingly more sophisticated ML
algorithms, NLP has progressed by leaps and bounds. By
simplifying the point of interaction between end users and
DW, newly developed tools will allow basically any user to
retrieve the desired information from an information system or
a DW. It will reduce wait times for reporting, decrease costs
normally associated with information retrieval, and generally
facilitate the decision-making process.

The ideal NLP algorithm for SQL generation should be able
to understand “a natural language (NL) query” and “translate
it into a database query” [2]. Also, it should correctly identify
the tables and columns, perform any necessary joins, aggregate
data if needed, and be error-free. An error-catching mecha-
nism must be considered, as well as clarification capabilities.
Additional reporting functions are required for a total system
design, but are not necessary as part of the algorithm design.

In this paper, we identify and review various research efforts
and recent advances in the area of NLP implementation for
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data query systems. Through the review, it will be able to
identify and appreciate the various issues involved in such
efforts as well as the ideas and tools currently available. We
also briefly review the work on the building of a DW in support
of the NLP implementation. Unless explicitly stated otherwise,
NLP is discussed here under the guise of applied machine
learning for Energy Information Systems.

II. APPROACHES IN CONVERTING AN NL QUERY

There are two distinct approaches in converting an NL query
into a database query: rule-based algorithms [3]–[11], and ML
algorithms [12]–[27].

A. Rule-Based Algorithms

The structure of a rule-based algorithm can be broken
into three distinct components: an NLP processor, a mapping
table, and a mapping and query generation engine. An NLP
processor first breaks a natural language query into words
(objects, verbs, and associated qualifiers such as where, how,
how many, etc.). A mapping table, created by the researcher
in advance, is a reference for converting these words into
appropriate elements of the subject database (table names,
column names, or values). A mapping and query generation
engine produces the database query by matching the output
from the NLP processor and words from the mapping table.

Note that the NLP processor is responsible for the the
processing of a NL query regardless of whether the algorithm
is rule-based or not. Essentially, an NLP processor involves the
following four components: tokenization, stop word removal,
word replacement, and parsing.

1) Tokenization: The tokenization component splits a nat-
ural language query into a sequence of single words (tokens).
Authors in [4], [5] suggest that tokens can be further clas-
sified into several groups. This additional step can speed up
the matching process against the mapping table and reduce
ambiguity in a rule-based algorithm. The number of classified
groups varies. Agrawal in [4] described three groups: reserved
keywords (wh-clause), database attributes, and values. On the
other hand, Sontakke [5] proposed the classification using
more groups: table names, column names, condition, values,
command names, operation names, and non-useful words.

2) Stop Words Removal: It is usually performed on the
tokenized natural language query. Authors in [6] suggested
to decide what type of words should be kept; for example,
only nouns, proper nouns, adjectives, and numbers are kept
after the stop words elimination. Other authors proposed their
own unwanted words list/ignore list that included prepositions
and frequently used nouns [7], [8].

3) Word Replacement: This is a process to convert words
from NL into those that fit within a database context. Several
approaches in word replacement may be used. Stemming is
the process that identifies the root word by removing any
suffix(es), including -s, -es, -ed, -ing, and -er etc., in each
tokenized word [3], [7]. Uma in [10] stated that lemmatization
is more preferable than stemming because of the fact that
the removal of a suffix in stemming does not guarantee the

generation of an accurate basic form of a word that exists in a
dictionary. For instance, “studied” will be converted as “studi”
by stemming, but this word does not exist in the dictionary.
But, “studied” will be converted to “study” if lemmatization is
used; a more accurate result. Word replacement may also be
accomplished through synonyms and hypernyms [3], [8]. For
example, the word “employee” can be used to replace a word
“staff” (by synonyms) or “office assistant” (by hypernyms).
This approach can be used in combination with either stem-
ming or lemmatization: The word “workers” can be replaced
as “worker” by stemming and the stemmed word “worker” can
be replaced as “employee” [6]. This word replacement process
is important as it provides better matching of words in NL with
those associated with the target database and therefore helps
to improve the relevance and accuracy of the converted query.

4) Parsing: A parser is used to generate a parse tree from a
natural language query [4], [6], [7], [9]. A parse tree is a rooted
tree that shows the structure of a sentence based on its syntax.
Through the parse tree, an NLP processor can understand
the relationship or words association; the identification of a
verb or noun phrase. A parsing component provides additional
information and therefore better understanding on the structure
of a natural language query. Depending on the needs of the
algorithm design, the NLP processor implements some or all
of these components.

From a performance perspective, authors in [4], [5], [8]
claimed that their rule-based models were successful in con-
verting natural language requests into valid database queries.
The algorithm developed by Uma [10], which can handle two
types of specific question in terms of NL, has an 98.89%
accuracy rate in 2,880 test cases on a very limited data set
made to test their model.

B. Machine Learning Algorithms

ML algorithms application is another approach in NLP
implementation for converting natural language requests into
queries. A NL request is split into a series of words and
serves as input. Then a trained ML algorithm, most likely a
deep learning algorithm, produces the three main components
required to form a database query as output: selected at-
tributes/columns, aggregate operator, and filtering conditions.

1) Model Architecture for Database Query Generation:
As the input format is a sequence of words, a recurrent
neural network (RNN) can effectively handle this format.
The characteristics of RNN models are 1) able to store the
effect from the past input and 2) able to update the hidden
layer based on the past effect and the new additional input
from the sequence. Given these, an RNN becomes a basic
architecture in the algorithms on natural language queries to
database queries. The commonly used models including: “long
short-term memory model (LSTM)” [28], the “gate recurrent
neural network (GRU)” [29], the “sequence-to-sequence model
(seq2seq)” [30], and the attention model [31].

Word embedding layers are widely used as the first layers in
the deep learning models [14], [16], [19], [20], [27], [33]. The
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word embedding layer can provide word association and sim-
ilarity to the deep learning model before any training process.
Vathsala shows that using “a pre-trained word embedding layer
(GloVe)” [32] can improve the accuracy rate by around 3%
[33]. Instead of using word embedding layer, some researchers
also considered a BERT [34] pre-trained layer as a first layer
[12], [13], [19], [26], [35]. Pal in [36] used another optimized
BERT layer – RoBERTa instead of just the original one.

Most of the papers focus on the database query generation
based on one single natural language query. Zhang developed
a database query generation model which can consider mul-
tiple natural language queries, previously generated queries,
and the database schema with separate encoders [35]. This
model utilizes turn attention to store the hidden state of the
historical messages and generates a new database query based
on previous messages and the new message.

2) Input and Output Adjustment of the Machine Learning
Algorithms: Authorths in [23] showed that there is a need
for a pre-processing step on the natural language query. Guo
classified the tokenized words into groupings related to either
table names, column names, or values. Brunner classified the
token into five groups: table, column, value, aggregation, and
superlative. Apart from this, the database elements (table and
column) are also classified whether they are an exact match,
partial match, or value candidate match with the tokenized
words [24]. In both papers, the classified result becomes a part
of the input of their algorithms to generate an intermediate
representation that shows the linkage between the natural
language query and database query, called SemQL [23]. Other
than scanning the whole database, Ma [26] suggested using
an aligner, an unsupervised learning method served as an
automated annotator for the classification of tokens.

Apart from using a natural language query as input, re-
searchers also want ML algorithms to consider database ele-
ments in order to develop queries that can select the correct
target column. The most common method is to use the column
names as a part of input [12]–[14], [20], [25], [26]. However,
this method is only suitable for data sets that have a single
table. In reality, databases contain large amounts of data
employing complicated schema with multi-table structures.
Therefore, research suggests making the ML models learn the
entire structure of the targeted databases. Bogin utilized “a
graph neural network (GNN)” [37] to process the database
schema and make the algorithm generate a database query with
join-clause [22]. To increase the quality of generated database
queries, Wang suggests an execution guidance mechanism
[38]. The mechanism serves as an output monitor of the
generated database queries. It can detect and reject some non-
executable queries in the middle of the decoding process. His
work shows that this mechanism can improve the accuracy of
currently existing algorithms up to 6.4% higher.

III. DISCUSSION OF EXISTING MACHINE LEARNING
SOLUTIONS IN INDUSTRY

The ML approach to convert a NL query to a database
language such as Structured Query Language (SQL) is a

considerable development from the normal semantic approach
[15], [17]. Different deep learning models such as SQLNet
[14], Seq2SQL [20], SyntaxSQLNet [21] and F-SemtoSQL
[19] were used on different datasets such as WikiSQL, Spider,
Geo and ATIS and will be discussed in the following.

One notable artificial neural network approach to resolve the
problem of converting NL to SQL is to use an encoder-decoder
architecture to compete against semantic analyzers [17].

Seq2SQL is “a deep neural network architecture” that is
associated with a rule-based reinforcement learning algorithm.
It is formed using three parts: “the aggregation operator,
the SELECT column, and the WHERE clause”. Models are
built using PyTorch and the training is supervised using
reinforcement learning that rewards the decoder when one of
the serializations is produced. “This type of model has shown
to produce very limited results” [17].

Mellah et al. [17] mentioned SQLNet, suggested by [14],
a model which utilizes a sketch-based architecture and takes
the “structure of an SQL query, and generates it from a
dependency scheme”. This approach can provide a higher level
of accuracy (by 9% to 13%) than older techniques on the
WikiSQL dataset.

Mellah et al. [17] also mentioned another model, TypeSQL,
that was suggested by Yu et al [39]. This model again utilizes a
“sketch-based approach and treats the task as a slot filling one
by grouping various slots and finding relationships between
attributes”. This model is 3.5% more accurate than the SQLNet
model and demonstrates an improvement in accuracy of 2%
on “the WikiSQL dataset leading to a final performance
improvement of 5.5%”.

SyntaxSQLNet [21] is solving the problem with high-
efficiency complex and cross-problem domain text-to-SQL
generation tasks. The concept is based on a “tree-based SQL
decoder and table-sensitive column attention encoders” [19].
This model is capable of solving nested queries on databases
and was tested on the Spider dataset. Practical experiments
proved that this model can handle numerous complex SQL
queries while increasing the accuracy compared to other
models by 7.3%. All of the “source code of the above models
are available on Github” [17].

Finally, Li et al. [19] proposed F-SemtoSQL, a model
created using Python 3.6, PyTorch, two bidirectional LSTM
encoders, and BERT. The model trials are performed on
the Spider dataset and validated on WikiSQL, ATIS, and
GEO. This model is evaluated based on the accuracy of SQL
query conversions, which are generated by atomic, composite,
aggregate, and complex (ACC) events as defined by the
author. F-SemtoSQL demonstrates the best results on different
datasets compared to other techniques, such as SyntaxSQLNet.
Its main advantage is the ability to predict complex events
while maintaining an accuracy rate that is unaffected by the
issue of direct sequencing. Furthermore, “using the attention
mechanism allows the model to concentrate on various words
and sub-level events”. It is important to note that this model
uses “the database content to further understand the user query
in case it was not written accurately”. Utilization of a random
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masked mechanism performs considerably better than other
models described earlier. Li’s team in [19] observes that “F-
SemtoSQL outperforms the previous best work by 10.58%
to 41.68% in accuracy”. Additionally, they observed higher
accuracy in complex event areas over all compared SQL
queries on the test datasets, which included Spider (37.6%
development, 41.7% test), WikiSQL (81.8% development,
78.6% test), ATIS (90% development, 87.8% test), and GEO
(90.2% development, 89.7% test).

Xu [40] created a new model named NADAQ by consider-
ing the previous approach of using grammar structure and in-
tegrating it into a sequence-to-sequence (seq2seq) model. The
querying of the database in this system combines deep learning
with common parsing techniques used by traditional databases.
The main structures of this system are speech recognition,
translation, rejection, recommendation, and results display
[40]. Overall, the NADAQ surpasses in accuracy both older
conv-seq and attention-seq systems by a considerable margin
due to its advantage of using grammar states, thus saving the
wasted work on grammar understanding. The classification
accuracy rate for NADAQ in terms of F1 is 0.839. The F1
score of NADAQ on both IMDB and GEO datasets are higher
than 80%, which is near the industrial standard [40].

Mellah suggested an approach [27] inspired from the previ-
ously mentioned SQLNet [14]. His new methodology is based
on classifications, word embedding, and the use of an RNN,
specifically LSTM and GRU. The underlying concept is to
create a sketch that will produce the query from the natural
language with slots to be filled. Neural networks are employed
for the prediction of the content of each slot in the sketch.
The suggested model can be divided into five modules each
of which has a prediction component. The first module is
responsible for aggregation, the second and third will find the
select and condition columns, respectively. The fourth module
will define the correct operation. These four are handled as
a classification problem, while the last module will “predict
the value of the condition in the where clause. The user query
and the schema tables are considered as token sequences.” The
accuracy of the five modules over the used dataset, which was
inspired from WikiSQL, are shown in Table I.

TABLE I
THE ACCURACY OF MODULES OVER USED DATASETS [27]

Modules Training accuracy Testing accuracy
AGG 92% 89%
SELCOL 71% 66%
CONDCOL 73% 67%
OP 99% 99%
VALUE 76% 70%

Another approach suggested by Zhang and Weiss [41] is to
use an alternative neural network model that uses parsing and
tagging including part-of-speech (POS) tags. This stackprop
model is based on a feed-forward network that takes an
embedded feature matrix as input and feeds it through a hidden
layer and a softmax prediction layer. In terms of classification
accuracy, this model surpasses all other models, such as the

graph-based RGBParser, by a small margin when applied to
the same test dataset (78.9% versus 77.6%). Furthermore,
the system can be further improved by 2.3% in classification
accuracy through the use of a POS tag. However, there is a
limitation of the algorithm due to the use of a greedy parsing
technique.

Ferreira et al. [16] proposed a model “that relies heavily
on pre-processing and post-processing mechanisms”. This
approach employs a single attention mechanism model that
starts with a “pre-processing step in which the sequence is
sent to a neural network. Next is the post-processing step
in which the final output is grouped and assembled.” The
pre-processing step will do the preparation for the prediction
model by dividing the input string using various methods
such as tokenization, removing stop-words, lemmatization, and
vectorization. The goal of the model prediction phase is to
take the input from the first phase and process it using an
ML encoder-decoder architecture. The post-processing phase
groups the output by using different techniques “such as
vector-to-token conversion, replacement of placeholders, and
labelling” to construct the database query [16].

In Kombade’s ML approach [18], query prediction is done
using multinomial logistic regression. The regression uses a
more complex cost Sigmoid function. The concept is based
on tagged tokens and mapping for noun(s). The verb list
is prepared using iteration and the label encoder gives each
token a unique identifier. The model is trained using a logistic
regression algorithm. Hence, the model will be able to predict
whether the NL statement should be converted to a SELECT
statement or data manipulation language (DML) query. This is
done based on certain words that appear in the initial query that
have synonyms to those words. The accuracy of the proposed
model is 98.65% successful in predicting the query type (either
a SELECT statement or DML query) [18].

IV. MACHINE LEARNING ALGORITHM DATA SETS

A. Data Sets Overview

In testing all of these different models, many research teams
choose to use standardized datasets to form a baseline for
comparison. However some still construct their own training
and testing sets. The most commonly used testing datasets are
Spider, WikiSQL, ATIS, GEO, and SParC. Each will be briefly
discussed to provide context for the previously mentioned
model accuracy rates.

1) Spider: Spider is a relatively “new large-scale annotated
text-to-SQL dataset” [42]. It consists of “10,181 questions,
5,693 unique complex queries, 200 databases, and 138 do-
mains” [19]. A specific advantage of this dataset is that it
is designed to mimic real scenarios including query nesting,
multiple table joins, and different syntax usage. The dataset
can also be divided into several subsets with varying degrees
of difficulty in query conversion and can therefore be useful
for development and test planning [19].

2) WikiSQL: WIKISQL is a mono-table dataset that con-
tains “80,654 NL sentences with the corresponding SQL
queries and 24,241 HTML tables from Wikipedia” [19]. This
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dataset has limited uses for developing practical ML models
as it includes “queries with only one column for the SELECT
clause and one table in the FROM clause”. However, it has
been used often in NLP and ML research.

3) GeoQuery: Geoquery, or GEO, is a small dataset that
contains information on the geography of the United States,
such as states, cities, rivers, and mountains [43]. According to
the Computer Science department at the University of Texas,
the dataset contains 880 queries in NL and the corresponding
queries in a formal query language. It is considered a fixed-
schema dataset that can be used for the development of ML
models for complex and composite queries over a closed
domain [19].

4) ATIS: ATIS is commonly used to evaluate semantic
analysis systems [44]. This dataset contains two subsets for
training and two for testing. It is also considered as a fixed-
schema dataset similar to Geoquery [19].

5) SParC: SParC is a dataset that has context-dependent
queries under a cross-domain setting based on Spider [42],
[45]. The semantic meaning of the latest queries are dependent
on the previous query in a context-dependent querying domain.
Interestingly, ATIS [44] is also a context-dependent data set,
but it is limited to a specific flight database domain. SParC
provides context-dependent queries with 200 databases and
its complexity is considerably higher than that of ATIS.

V. DW AND NLP INTEGRATION

A. NLP use for Database Search Current State

Much of the current state of applied NLP use with database
and DW systems occurs in the medical field. Electronic
medical records and the databases in which they are stored are
scanned using NLP algorithms to aid in differential diagnosis
of patients presenting with potentially unclear pathologies. The
use of NLP has aided in diagnosing fatty liver disease [46] and
identifying smoking status [47], among others. Researchers
often choose to use the designed-for-medicine analytical algo-
rithms “CLAMP (Clinical Language Annotation, Modeling,
and Processing)” [48] and “cTAKES (clinical Text Analysis
and Knowledge Extraction System)” [49]. Frequently, these
tools are used together to produce actionable results. Each
builds from an ML basis with tactics discussed earlier in-
cluding a sentence boundary detector, tokenizer, part-of-speech
tagger, a parser, and an encoder. CLAMP, as the newer proce-
dure, expands on these further with additional functionality in
recognizing acronyms and shorthand, assertion and negation
detection, and a complicated rules engine allowing the user to
define their own rules to fine tune searching, querying, and
performance. Though the structure of medical databases, data
warehouses, and electronic medical records vary drastically
from classical database structures, the impact and implication
of applied ML affords support for pathways of development
in many other fields.

Outside of the medical industry, there have been devel-
opments in NLP in a handful of other areas. O’Halloran,
Pal, and Jin [50] have worked together to utilize NLP tools
in a multimodal analytical platform to scrape and analyze

information from many media websites including Facebook,
Twitter, and Reddit, among others. Rather than using NLP to
translate text to SQL, their work aims to allow for the use of
NLP as a tool to more accurately associate text to other related
multimedia formats. Wei, Trummer, and Anderson of Cornell
University [51], [52] have put forward interesting research
this year where they aim to not only optimally translate text
or spoken language to SQL queries, but to visualize it to
the user to aid in choosing the correct queries. Following
a spoken query, the model presents text-to-SQL as a visual
matrix/multiplot from which the correct, desired query can be
selected for execution.

B. Recent Advancements in Data Warehousing

In consideration of a total business solution, not only ML
and NLP must be considered to maximize efficiency; the de-
velopment and utilization of a data warehouse reduces the time
taken during the decision-making process [53]. Advances in
data warehousing provide a parallel research and development
opportunity. Taken in concert, a combined approach utilizing
cutting edge research in both NLP and data warehousing is
likely to provide the current most efficient and achievable data
retrieval and reporting. Specific target areas include increasing
efficiency in the extract-load-transform (ELT) process, increas-
ing availability of near-real-time data access, and advanced,
but simplified, structural schema design to limit joins.

To begin, Dhomne et al. [54] provide a well-rounded, if
simple, design mechanism for natural language interface to
database (NLIDB) systems. They point out that two major
components comprise an NLIDB: a linguistic component and
a database component. The linguistic component corresponds
to NLP and is the subject of many recent studies, some of
which have already been discussed [19], [33], [56], [57]. The
database component has been well explored and many other
teams continue to pursue both OLTP and DW solutions. The
discussed NLIDB architectures serve as a solid framework on
which to develop an in-house system.

Reddy et al. [58] discuss the basic principles of DW as a
decision-making tool that is market-oriented. Further, Garani
et al. [59] use a case study to demonstrate the idea that intel-
ligent and meaningful design of hybrid multi-dimensional and
relational OLAPs (HOLAP) can result in optimized efficiency
in retrieval of integrated data. They present that a starnest
schema results in an optimal design pattern for a DW to
capture spatiotemporal data that is common in the utilities
industry, for example. Increases in query runtime efficiency
were observed in nested tables over flat tables, a fact supported
by the number of rows accessed being lesser in the nested
tables.

Aziz, Anees, and Mehmood [60] discuss a set of semi-
stream join algorithms to provide increased efficiency in
the ELT process through proposed “parallel hybrid join (P-
HYBRIDJOIN)” and “Queue and Stack hybrid join (QaS-
HYBRIDJOIN)” methods. The identified drawback in current
hybrid joins is that “a single buffer is used to load the disk
partition” resulting in sub-optimality due to an I/O bottleneck.
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Both the P-HYBRIDJOIN and QaS-HYBRIDJOIN result in
approximately three orders of magnitude higher tuple uploads
per second (7x106 and 8x106, respectively) over previously
identified optimized hybrid join methods from the literature.
The observed increase results from decreasing I/O cost through
dissolution of interdependent processes on the disk buffer
loading and probing phases. More simply, a multi-disk buffer
facilitates parallel loading resulting in reduced I/O cost.

C. NLP to SQL Code Generation

There seems to be great difficulty in fully correct NLP
translation, but several groups, including Li [19], Karthik [57],
and Vathsala [33], have been working to develop systems that
more accurately translate spoken or written text into executable
SQL statements that retrieve the correct and desired data. As
described above, Li et al. have worked recently to develop F-
SemtoSQL, a slot-filling method where relationships between
attributes are captured “by grouping the different slots in a
graph dependency way” [19]. As has been recognized in many
NLP tasks, most spoken sentences or statements are filled
with words that are not used or are not relevant to building
out an SQL query. To minimize an potential interference by
non-useful words, specific slots in basic SQL syntax were
identified as needing to be filled to generate the correct query
(see Listing 1):

Listing 1. An Example of Specific Slots in Basic SQL Syntax [19]

SELECT $ AGG $ COLUMN
WHERE $ COLUMN $ OP $ VALUE
(GROUP BY / ORDER BY)

“The slots ($ Xid) are identified as atomic events that can
additionally be further drilled down to higher-level composite
events, aggregate events, and complex events.” These combos
of events allow for more complex querying including options
like ORDER BY DESCENDING, ORDER BY ASCENDING,
GROUP BY HAVING, nested SELECTs, operators (<, >, ≥,
etc.), and more. The improvements in accuracy of this method
were previously noted in Section III.

Alternatively, Vathsala et al. [33] propose a different model
to achieve high accuracy of translation and over traditional
seq2seq models. SQL statements are instead generated using a
policy gradient algorithm as outlined by Sutton in [55]. Their
method incorporates Memory Augment Policy Optimization
(MAPO) alongside a pretrained word embedding with GloVe
and an epsilon greedy strategy. Using the WikiSQL data
set, the model achieved a “dev accuracy of 76.8% and a
test accuracy of 77.6%”. These levels are consistent with Li
[19] and Rubin [56]. Interestingly, their results demonstrate
a markedly increased development accuracy as the number
of training epochs increases, but present with a negative
curvature suggesting an upper limit to the effectiveness of
greater training epochs.

Karthik et al. proposed yet another method to convert human
speech into machine readable queries using NLP techniques
in a metadata-driven framework [57]. They point out early a

major drawback to their approach is in that common mapping
rules required to parse a tree structure to SQL will fail with
complex queries. Specifically, finding the correct columns and
tables from which to pull the data must be identified from an
NL statement unambiguously. Their work focuses on metadata
information to facilitate entity detection and table joins. They
do not mention results against standard data sets like Spider
or WikiSQL, but their ideas point toward a different approach
path. The domain independence of this translation mechanism
point to its cross-system portability and generalizability for
non-technical end users.

Brunner and Stockinger [24] have developed specifically
targeted tools dubbed ValueNet and ValueNet light that seeks
to post high execution accuracy rates on the Spider data set.
ValueNet and ValueNet light build on Abstract Syntax Trees
(AST) rather than directly translating to SQL as in a seq2seq
model to avoid the problems where an input user does not
provide enough information to generate a full query. Using this
model, they achieve accuracy rates ranging from 77% correct
for easy queries to 43% for extra-hard queries, with ValueNet
light achieving an approximate 4% higher accuracy rate on
average over ValueNet for various training epochs. Specifically
highlighting error analysis, they chose incorrect queries at
random for more in-depth analysis to determine the root cause
of incorrectness and found that in approximately 50% of those
queries the wrong column was selected. Further, they noticed
that of those 50%, another 25% selected the wrong columns
in the wrong tables. The results they posted are promising
and further external research can be carried out to correct the
column selection errors as Brunner and Stockinger have posted
their source code for independent peer-review.

VI. CONCLUSION

In this paper we discussed recent advances in NLP and DW
as an integrated solution for information retrieving from DW
using human speach.

The basic structure of NLP algorithms have been discussed
and compared from both a rule-based standpoint and an
ML standpoint. Rule-based NLP often follows the pattern
of tokenization, stop-word removal, word replacement, and
lemmatization. ML models are widely varied in their imple-
mentation and specifics, though most fall under four broad
categories: “Long Short-Term Memory (LSTM), Gated Re-
current Unit Neural Networks (GRU)”, Sequence-to-Sequence
models (seq2seq), and attention models. The use of recurrent
neural networks to store effects over time is widespread and
facilitates the “learning” aspect of ML in these applications.
Further advancement and accuracy are achieved in models em-
ploying additional training mechanisms like word embedding
and output monitoring mechanisms like execution guidance.
Among large testing data sets, such as WikiSQL and Spider,
relatively high accuracy rates in the ranges of 65%+ have been
achieved though there is yet room to improve accuracy rates.
Identified areas for improvement include targeting column and
table selection, slot filling for complex queries, and correctly
identifying metadata information for SQL generation.
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Advancements in data warehousing also suggest promising
results in facilitating a true whole-system solution incorporat-
ing ML models. Hybrid OLAPs with starnest schema represent
a target for increasing data retrieval efficiency aimed at lim-
iting the number of table joins. Semi-stream join algorithms
also increase efficiency by presenting an ELT process with
an approximate three orders of magnitude faster load time
resulting in near-real-time delivery of data from a contin-
ually updated data warehouse. Multi-disk buffering in yet
even larger warehouses suggests continual improvements in
decreasing load times in the ELT process.

In service of this review, we seek to implement a multi-
factorial and integrated NLP and DW solution for real-time
retrieval and reporting of business data from an Energy
Information System. Our previous research areas [61]–[64],
alongside this review, will facilitate this development. We seek
to further develop accurate and responsive reporting models to
contribute to the applied research community.
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