A New Online Tool for Gamer Network
Performance Analysis

Nick McDonald, David Leader, Cheng-Kao Chiang and Youry Khmelevsky*
Computer Science, Okanagan College, Kelowna, BC Canada
Emails: nick.mcdonald.94 @ gmail.com, solorak@gmail.com and

Rob Bartlett and Alex Needham
WTFast, Kelowna, BC Canada
Emails: {rob, alex} @wtfast.com

fan119053 @gmail.com, ykhmelevsky @okanagan.bc.ca

*Also Affiliated with Computer Science, UBC (Okanagan Campus), Kelowna, BC Canada

Abstract—This paper discusses a new online tool for online
gamers to share networking performance results and to produce
aggregate networking performance reports generated from the
data reported by all users. It is necessary to improve the quality
of service and make online games faster. This will help improve
latency sensitive game data collection. It will help to improve
gaming performance through the global network of servers,
optimizing the game connection from end to end.

A Web API was developed to receive data in the form of
a HTTP post from WTFast clients while they are playing their
games. A data generator was also built to simulate thousands
of concurrent users posting data to the web API. The web API
stores the data in a Elasticsearch database. A web interface was
built for WTFast clients to view their historical network data
and to share it on forums or social media. The web interface
shows a graph of their network performance with and without
using the GPN®. The complete system is anticipated to need to
handle approximately 400,000 concurrent users sending network
data every 2 seconds.

I. INTRODUCTION

The current “WTFast’s Gaming Private Network®
(GPN®)” [1] online tool “gathers data about the internet
connection, such as the latency, route and the amount of data
sent/received” [2], but gamers still can’t see the comparison of
the regular internet connection vs of the improved connection
by the GPN® . Moreover, it would be nice for gamers and for
the WTFast system administrators to see the historical infor-
mation of the connection to improve the provided services.

Users should be able “to view statistical information about
their network connections with and without using the WTFast’s
GPN®. It includes the collection and analysis of network
data (pings, latency) and visualization of the analyzed data
to provide meaningful information to the user, and allow
the user to share his/her network statistics on forums and
other social media. The WTFast’s GPN® is a virtual private
network that is configured specifically for gamers to provide an
optimized online gaming experience. The data is collected by
the WTFast’s client software and sent to a back-end database
through a web API. The data is analyzed and presented to the
client via a web interface” [2].

Our research contributions are:

a) A new online tool for the online gamers, clients of the
WTFast to share networking performance results and

978-1-5090-6096-2/16/$31.00 (©2016 IEEE

to produce aggregate networking performance reports
generated from the data reported by the gamers.

b) A new data generator for the online tool and for the
Elasticsearch database testing.

c¢) A proof of a concept for the networking metadata
collection of the online gamers.

II. RELATED WORKS

The “large-scale network simulation is an important tech-
nique for studying the dynamic behaviour of networks, net-
work protocols, and an emerging class of distributed appli-
cations, including Peer-to-Peer and Grid applications” [3].
The original GPN® infrastructure prototype, which was built
in 2014 for initial tests we discussed in [4]. GPN® makes
online games faster by increasing game speed, reducing game
disconnections, deviations and lag caused by spikes in packet
traffic [2].

A “video game network, which is a distributed set of
apparatuses which are capable of exhibiting an interactive
single identity game. Response times and network latencies
are very important video game parameters, which can be a
reasons for gamers frustration and dissatisfaction, especially
in the multi-user environment” [5].

“The online service’s computers themselves introduce la-
tencies, which are bigger with the larger number of active
gamers” [6].

Zhou et al. discovered that “latencies and delays are
important in First-Person Shooter (FPS) games and it can
give advantages to a gamer with less delays. The time the
information reaches the server that matters, not the time the
player actually pushes the button” [7].

“The latency in Internet is stronger for the First-person
perspective online video games” [8]. Faerber shows, that “the
client’s traffic has almost constant packet and data rate in
different First-person games” [9].

Lee investigated “the StarCraft II game and found network
problems related to delays, jitters and packet losses” [10].

Claypool et al. (2012) investigated traffic, generated by a
thin client of OnLive games as well as traffic characteristics
such as the bitrates, inter-packet times and packet sizes’ [11].

Zander et al. found that “gamers with more delays due
to either a longer distance to servers, connection problems,

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:29:14 UTC from IEEE Xplore. Restrictions apply.

or congestions have disadvantages to compare with the other
gamers. The authors used bots instead of gamers to evaluate
eliminating delay differences between players” [12].

“A traffic generation tool OpenAirlnterface Traffic Gen-
erator (OTG), which can be used for online gaming testing
and evaluation, as well as for modelling and simulation” was
described in [13].

III. SYSTEM DESIGN

At the start of our project we gathered requirements for
our system, decided what technologies we were going to use,
and what features our software would have. The architecture
we decided on consists of a data generator built on Java, web
API built on C# .NET MVC, and Elasticsearch as our backend
database. The web API allows the data generator (or WTFast
client) to post data to our back-end Elasticsearch database and
also hosts a website for viewing and sharing summaries of
their data.

Fig. 1 shows a layered view of the system. Users interact
with the system via web browser for viewing their data. The
browser interprets the JavaScript, HTML and CSS that comes
from our C# .NET MVC middleware. We use a web framework
named Bootstrap to display our webpage in a nice, responsive
way, and the D3.js library for graphing the network data. Our
middleware is written using C# .NET MVC, which runs on
our Nginx web server. Because .NET applications are ment
to run on Windows, to run them on CentOS 7 we had to run
the application on Mono, which is a framework that allows
.NET applications to run on Linux. We used FastCGI to host
the application on top of Nginx. We used Elasticsearch as our
database. Elasticsearch is a NoSQL database, we chose to use
it because it is good at handling the large amount of data we
need to store, and it scales well so we could add more database
instances easily to increase redundancy and performance of the
system.

A. Overview of the database data

Fig. 2 shows a Kibana dashboard that an administrator
could use to assess the state of the GPN® . The graph at the top
of Fig. 2 shows the average pings sent to the database over the
last five minutes. The User count graph (bottom left) shows the
number of users for the top 5 games. The Data count (bottom
middle) shows the amount of entries for the top 5 games. The
count metrics (bottom right) show the total number of entries
in the database, the total number of unique user ids, the total
number of unique games and the total unique sessions. The Pie
chart illustrates the count of data for the top 5 games. These
are just a few of many metrics that would be useful to WTFast.

B. The web API of the system

The web API is a web application built on C# .NET MVC.
It has 3 main functions, hosting a website where end users can
view their sessions, and providing interfaces for posting data
to the database, and retrieving data from the database, and
handling the upload and retrieval of images generated by the
web interface. The application works as a piece of middleware
so that the user never has direct contact with the database,
which would be a security risk.

Bootstrap D35

JavaScripk | C55 | HTML
Browser

ASPY|C#

Magir Elasticsearch

Centds 7
Amazon ec2 small

Fig. 1. System Architecture

IV. DEVELOPMENT

We developed a data generator for testing our system. The
generator is small Java application that generates data to test
the web API and to populate our database. We made the
data generator to simulate many users concurrently using the
system. We used this generator for load testing the system to
detect performance issues and insure that the system is capable
of handling the loads that it would see in the real environment.

The Generator class diagram can be seen in Fig. 6. The
GUI class provides a user interface that the user can use to
configure and run the generator. When the generator is run the
controller class creates a list of sender Threads. The sender
Threads use the generator class to generate data to be sent to
the web API via an HTTP request.

A. User’s Interface

A prototype of the web interface can be seen in Fig. 3
and Fig. 4. The interface is very simple. When the use logs in
to his/her account the user sees 2 dropdown menus. The first
dropdown menu is a list of the games that the user has played.
The second is a list of all of the sessions of the selected game.
The session id that the user will see will be the start time of the
session, though that has not been implemented yet. The most
recent session is displayed by default when the user logs in.
The graph of the session shows the ping time throughout the
whole session for both the Internet (Red) and using the GPN®
(Yellow). This shows the decrease in ping time as well as the
frequency of ping spikes when using the GPN®. Below the
graph there is some aggregate information that describes the
session including highest and lowest ping, and the number of

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:29:14 UTC from IEEE Xplore. Restrictions apply.

AveragePingsLastsm

£ %

Legend ©
@ Average wTFPing
100

® Average internetPing

@ Average wTFASAdvan
80

45:30 1 9:47:00 9:47:30 19:48:00

Time per second

~
UserCountPerGame &S x DataCountPerGame & CountMetrics £ %
Legend © Legend ©
® Cs6o @ Worlg Of Tanks
@ World Of Tanks ® csGo 2 092 0 0 0 42 5
Call of Duty @ League Of Legends L]]
DoTaz2 Call of Duty Count Unique count of UserlD Unique count of GamelD
@ League Of Legends DOTA2

26

Unique count of SessionlD

A

Fig. 2. The average of all pings sent to the database within the last five minutes

~

Wwir

Minecraft - Demo1460449603049rand:77 ~ Upload your speed

01:30:00 02:00:00 02:30:00 03:00:00 03:30:00

O WTFast

Connection Stats
Ping Spikes
highest Ping
lowest Ping

Ping Average

Fig. 3. Web Client Interface

ping spikes as well as a percentage improvement when using embed it in forums or share it on social media.
the GPN®,

The last feature of the web interface is the "Upload your
Speed” button. Clicking this button will generate an image
similar to what is shown in Fig. 5 and will upload the image Using the Bootstrap framework allowed us to make a
to the server. In a pop up window users will be shown the responsive design that would work on many different screen
image, and be given the URL of the image so that they can resolutions including mobile phones as seen in Fig. 4.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:29:14 UTC from IEEE Xplore. Restrictions apply.

Minecraft ~

Demo1460449603049rand: 77 ~

Upload your speed

300
250
200
150
100
50
0

01:30:00 02:30:00 03:00:00 03

Connection
Stats

Ping
Spikes
highest
Ping
lowest
Ping

Ping
Average

Fig. 4. Web Client Interface (Mobile Version)

WTFast Average Ping

T8 ms

| I—

WTFast Average Ping

Fig. 5. A badge with summary of the connection data

V. SECURITY

There are some security concerns when handling user
data. The end users of the system should only have access
to their own data, all other data should be secured and not
be vulnerable to common attacks such as SQL of JavaScript
injection. Due to the scope of our project we did not implement
an authentication system. Because this system was designed to
be integrated into an existing system at a later date, an authen-
tication system would complicate that process. In the complete
system authentication would ensure that an authenticated user
could only view his/her data.

A non-functional requirement for the system was that
all network communication should be secured using Secure
Socket Layer (SSL). This includes both the communication
between the Web Client and the web API, as well as between
the web API and the database. We secured the database by
using a reverse proxy through our Nginx web server [14] and
enabling SSL and basic authentication.

VI. FUTURE WORK

This project has been passed on to a research team at
Okanagan College for further research and development. Our
project will be used as a prototype and will be rewritten using
Python and Go programming languages. After being rewritten
the research team will integrate it with WTFast’s rich client
to start gathering data from real users. They will analyze this
data and look for patterns that could help improve the quality
of service of the GPN®,

The future research will include the online tool prototype
migration into production environment, security testing, and
performance optimization. The collected data will be used for
better service to the end users.

Another future research topic is related to the collected
metadata analyzes and creating infographics to assess the
vulnerabilities and network performance degradation during
time, to predict traffic spikes or other performance degradation
artefacts.

VII. CONCLUSION

We have created a system for collecting network data from
thousands of clients all around the world. This system consists
of a web API, an Elasticsearch database, a web interface for
viewing data, and a data generator for testing the system. The
data collected by this system will be used by WTFast’s clients
to view the network performance boost that WTFast gives
them, as well as by developers at WTFast to help them improve
their services.

In this research paper we discussed a new online tool for
gamer network performance analysis. The developed online
tool allows monitoring of client network performance meta-
data. A data generator was developed for the online tool and
Elasticsearch database testing. This allows us to simulate a
large data transmissions to the Elasticsearch database.

ACKNOWLEDGMENTS

We would like thank Computer Science’s students Jon
Ohlhauser and Corey Frank, who participated in the initial
project prototype development within COSC 470 — “Software
Engineering” and within COSC 471 — “Software Engineering
Project” courses in 2014-2015.

The project was related to Engage Grants for colleges
“GPN-Perf: Investigating performance of game private net-
works” (number 465659-14), which was supported by NSERC
in 2014 and to NSERC’s “College and Community Innovation
Program — Applied Research and Development Grant” Level
2 “GPN-Perf2: Game private networks and game servers
performance optimization™ (477506-14), which was started in
January 2016.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:29:14 UTC from IEEE Xplore. Restrictions apply.

«Java Class»
{5 WTFGui

o frmWtfastBigData ; JFrame
o bukGameMame : JTextField
o bukUserMame @ JTextField

o controller @ Contraller

o table : JTable

[«Java Classs
main [)
; WTFGL () HEER {*) Controller
Lii
& initialize {] o basePing : int
] cl o userCount :ink
«Java Class»
(5 aSender e] o dataGenCount @ ink
h ®LSE® o
F APIURL : String o gameName : String
 gen: WTFastGenerator «Java Class» o userfame : String
o life boolean) (9 Batchsender o senders : List<aSender=
o dakaSent : int D wLsE® o dataSize ink T @ setGUh;alls F]l
5F statsd : StatsDClient - @ getDataSize () @ getSenderlist ()
@ getSessionID () @ BatchSender () @ Contraller ()
o getUserbame [) @ runi) @ buidGenerators ()
C o] rateBatchSender
@ getGameMame () {lilse» wjsen @ aenerateBatchSenders ()
@ getDataSent () Ny 0
° I-E s () #LsEs =]ava Class» «]ava Class#
e (=) WTFastGenerator {3 Generator
© revivele () o inkernetPing : Generator o baseline : int
SaiEiciasld o wkfPing : Generator o Flux @ ink

o wkFaPing : Generataor

o current :ink

o rand ; Random
o Generator ()
@ calcPing ()

@ aetPing ()
@ ForceMax ()

o userid : Skring
o gameid | String
sessionid : String
o rand : Random

[+]

getInternetPingGen ()
getwtfPingGen ()
getwtFaPingGen ()
getUserID ()
getGameID ()

@ getSessionID ()

& WTFastGenerator ()
@ calcData ()

LI R

@ getTime ()
@ getData()

Fig. 6. Generator Class Diagram

We would like to thank to Amazon Web Services, Inc,
Atlassian, IBM and all other companies, who supported our
educational and research projects.

REFERENCES

[11 A. I P. I. WTFast., “http://www.wtfast.com.”

[2] N. McDonald, C. Frank, Y. Khmelevsky, R. Bartlett, and A. Needham,
“GPN game user performance data gathering and analysis by a custom-
built tool,” in IEEE Canadian Conference on Electrical and Computer
Engineering (CCECE), 2016, Vancouver, BC, Canada, May 15-18
2016, pp. 1099-1103.

(3]

(4]

X. Liu and A. A. Chien, “Traffic-based load balance for scalable
network emulation,” in Proceedings of the 2003 ACM/IEEE Conference
on Supercomputing, ser. SC "03. New York, NY, USA: ACM, 2003,
pp. 40-. [Online]. Available: http://doi.acm.org.ezproxy.okanagan.bc.
ca/10.1145/1048935.1050190

T. Alstad, J. R. Dunkin, R. Bartlett, A. Needham, G. Hains, and
Y. Khmelevsky, “Minecraft computer game simulation and network
performance analysis,” in Second International Conferences on Com-
puter Graphics, Visualization, Computer Vision, and Game Technology
(VisioGame 2014), Bandung, Indonesia, November 2014, accepted for
publication.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:29:14 UTC from IEEE Xplore. Restrictions apply.

[5]

[6]

[7]

[8]

[9]

(10]

(1]

D. H. Sitrick, “Video game network. United States Patent number
4,572,509, Feb. 25, 1986.

S. G. Perlman, “Network architecture to support multiple site real-time
video games. United States Patent number 5,586,257, Dec. 17, 1996.

Q. Zhou, C. Miller, and V. Bassilious, “First person shooter multiplayer
game traffic analysis,” in Object Oriented Real-Time Distributed Com-
puting (ISORC), 2008 11th IEEE International Symposium on, May
2008, pp. 195-200.

M. Claypool and K. Claypool, “Latency and player actions in online
games,” Commun. ACM, vol. 49, no. 11, pp. 40-45, Nov. 2006.
[Online]. Available: http://doi.acm.org/10.1145/1167838.1167860

J. Férber, “Traffic modelling for fast action network games,” Multimedia
Tools and Applications, vol. 23, no. 1, pp. 31-46, 2004.

C.-S. Lee, “The revolution of starcraft network traffic,” in Proceedings
of the 11th Annual Workshop on Network and Systems Support for
Games, ser. NetGames *12. Piscataway, NJ, USA: IEEE Press, 2012,
pp. 18:1-18:2. [Online]. Available: http://dl.acm.org.ezproxy.okanagan.
be.ca/citation.cfm?id=2501560.2501583

M. Claypool, D. Finkel, A. Grant, and M. Solano, “Thin to
win?: Network performance analysis of the onlive thin client game

[12]

[13]

[14]

system,” in Proceedings of the 11th Annual Workshop on Network
and Systems Support for Games, ser. NetGames ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 1:1-1:6. [Online]. Available: http:
//dl.acm.org.ezproxy.okanagan.bc.ca/citation.cfm?id=2501560.2501562

S. Zander, I. Leeder, and G. Armitage, “Achieving fairness in
multiplayer network games through automated latency balancing,”
in Proceedings of the 2005 ACM SIGCHI International Conference
on Advances in Computer Entertainment Technology, ser. ACE ’05.
New York, NY, USA: ACM, 2005, pp. 117-124. [Online]. Available:
http://doi.acm.org.ezproxy.okanagan.bc.ca/10.1145/1178477.1178493

A. Hafsaoui, N. Nikaein, and C. Bonnet, “Analysis and experimentation
with a realistic traffic generation tool for emerging application
scenarios,” in Proceedings of the 6th International ICST Conference
on Simulation Tools and Techniques, ser. SimuTools ’13. ICST,
Brussels, Belgium, Belgium: ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2013, pp.
268-273. [Online]. Available: http://dl.acm.org.ezproxy.okanagan.bc.
ca/citation.cfm?id=2512734.2512771

“NGINX Plus: Complete application delivery,”
Available: https://www.nginx.com/products/

2016. [Online].

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:29:14 UTC from IEEE Xplore. Restrictions apply.

