How many moles of each compound react completely in the given reactions with the given quantity?

$6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(I) \longrightarrow 6 \mathrm{O}_{2}(\mathrm{~g})+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})$				
	CO_{2}	$\mathrm{H}_{2} \mathrm{O}$	O_{2}	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
1	12			
2			6	
3				3
4		24		
5				5

$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{I})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+3 \mathrm{CO}_{2}(\mathrm{~g})$				
	$\mathrm{C}_{3} \mathrm{H}_{8}$	O_{2}	$\mathrm{H}_{2} \mathrm{O}$	CO_{2}
6	3			
7				15
8		10		
9				12
10			40	

$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$			
	$\mathrm{N}_{2} \mathrm{O}_{5}$	NO_{2}	O_{2}
11	2.5		
12		1.5	
13			9.6
14		5.3	
15	7.2		

$2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{I})+25 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$				
	$\mathrm{C}_{8} \mathrm{H}_{18}$	O_{2}	CO_{2}	$\mathrm{H}_{2} \mathrm{O}$
16	1.0			
17		1.8		
18			9.6	
19				4.3
20			7.0	

Using the equations provided, answer the questions. Make sure to check if the equations are balanced!
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(I) \longrightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4}$
21. How many grams of $\mathrm{H}_{2} \mathrm{SO}_{4}$ can be formed from 3.1 grams of SO_{2} ?
22. How many grams of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are needed to form 5.4 grams of O_{2} ?
23. Given 3 kg of $\mathrm{SO}_{2}, 2 \mathrm{~kg}$ of O_{2}, and plenty of water, which compound would be limiting reagent?
24. What would be the theoretical yield in moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ given the amounts in question 23?
$3 \mathrm{CaCl}_{2}+2 \mathrm{Na}_{3} \mathrm{PO}_{4} \longrightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{NaCl}$
25. How many grams of NaCl can be formed from 4.8 grams of CaCl_{2} ?
26. How many grams of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ are needed to form 2.7 grams of NaCl ?
27. Given 32 g of CaCl_{2} and 32 g of $\mathrm{Na}_{3} \mathrm{PO}_{4}$, which compound would be limiting reagent in forming $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
28. What would be the theoretical yield in grams of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ given the amounts in question 27 ?
$4 \mathrm{FeS}+7 \mathrm{O}_{2} \longrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+4 \mathrm{SO}_{2}$
29. How many grams of SO_{4} can be formed from 2.9 grams of FeS ?
30. How many grams of O_{2} are needed to form 3.3 grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$?
31. Given 1.1 g of FeS and 4.3 g of O_{2}, which compound would be limiting reagent in forming SO_{2} ?
32. What would be the theoretical yield in grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ given the amounts in question 31 ?
$\mathrm{NH}_{3}+\mathrm{O}_{2} \longrightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
33. How many grams of NO can be formed from 9.9 grams of NH_{3} ?
34. How many grams of O_{2} are needed to form 7.7 grams of NO?
35. Given 45 g of NH_{3} and 50 g of O_{2}, which compound would be limiting reagent in forming NO?
36. What would be the theoretical yield in grams of NO given the amounts in question 35 ?

