QUANTITIES IN CHEMICAL REACTIONS PRACTICE

How many moles of each compound react completely in the given reactions with the given quantity?

$6 CO_2(g) + 6 H_2O(I) \longrightarrow 6 O_2(g) + C_6H_{12}O_6(aq)$					
	CO ₂	H₂O	O ₂	C ₆ H ₁₂ O ₆	
1	12				
2			6		
3				3	
4		24			
5				5	

$C_3H_8(I) + 5 O_2(g) \longrightarrow 4 H_2O(I) + 3 CO_2(g)$					
	C ₃ H ₈	O ₂	H₂O	CO ₂	
6	3				
7				15	
8		10			
9				12	
10			40		

$2 N_2O_5(g) \longrightarrow 4 NO_2(g) + O_2(g)$					
	N_2O_5	NO ₂	O ₂		
11	2.5				
12		1.5			
13			9.6		
14		5.3			
15	7.2				

$2 C_8H_{18}(I) + 25 O_2(g) \longrightarrow 16 CO_2(g) + 18 H_2O(g)$					
	C ₈ H ₁₈	O ₂	CO ₂	H₂O	
16	1.0				
17		1.8			
18			9.6		
19				4.3	
20			7.0		

Using the equations provided, answer the questions. Make sure to check if the equations are balanced!

$$2 SO_2(g) + O_2(g) + 2 H_2O(I) \longrightarrow 2 H_2SO_4$$

- 21. How many grams of H₂SO₄ can be formed from 3.1 grams of SO₂?
- 22. How many grams of H₂SO₄ are needed to form 5.4 grams of O₂?
- 23. Given 3 kg of SO₂, 2 kg of O₂, and plenty of water, which compound would be limiting reagent?
- 24. What would be the theoretical yield in moles of H₂SO₄ given the amounts in question 23?

$3 \text{ CaCl}_2 + 2 \text{ Na}_3 \text{PO}_4 \longrightarrow \text{Ca}_3 (\text{PO}_4)_2 + 6 \text{ NaCl}$

- 25. How many grams of NaCl can be formed from 4.8 grams of CaCl₂?
- 26. How many grams of Na₃PO₄ are needed to form 2.7 grams of NaCl?
- 27. Given 32 g of $CaCl_2$ and 32 g of Na_3PO_4 , which compound would be limiting reagent in forming $Ca_3(PO_4)_2$?
- 28. What would be the theoretical yield in grams of Ca₃(PO₄)₂ given the amounts in question 27?

$4 \text{ FeS} + 7 \text{ O}_2 \longrightarrow 2 \text{ Fe}_2 \text{O}_3 + 4 \text{ SO}_2$

- 29. How many grams of SO₄ can be formed from 2.9 grams of FeS?
- 30. How many grams of O₂ are needed to form 3.3 grams of Fe₂O₃?
- 31. Given 1.1 g of FeS and 4.3 g of O₂, which compound would be limiting reagent in forming SO₂?
- 32. What would be the theoretical yield in grams of Fe₂O₃ given the amounts in question 31?

$$NH_3 + O_2 \rightarrow NO + H_2O$$

- 33. How many grams of NO can be formed from 9.9 grams of NH₃?
- 34. How many grams of O₂ are needed to form 7.7 grams of NO?
- 35. Given 45 g of NH₃ and 50 g of O₂, which compound would be limiting reagent in forming NO?
- 36. What would be the theoretical yield in grams of NO given the amounts in question 35?