To factor $x^{2}+b x+c$

1. Arrange the terms in descending order.
2. Factor out any greatest common factors.
3. List the combinations of 2 numbers that multiply to c and add to b. Make sure to check for negatives to figure out which combination is the right onw.
4. Each number in that combination is part of a factor. Put your answer in the form $(x+n)(x+m)$, where n and m are your 2 numbers.
5. Remember you can always check your answer by multiplying.

Difference of squares

Use this when you want to factor something that looks like $x^{2}-a^{2}$, where a^{2} is a number that is a perfect square.
$x^{2}-a^{2}=(x-a)(x+a)$

Factor

1. $(x+9)(x+4)$
2. $(x+6)(x+3)$
3. $(x+7)(x+3)$
4. $(x-6)(x+2)$
5. $(x+6)(x-6)$
6. $2(x+2)(x+5)$
7. $(x-9)(x+2)$
8. $(x-9)(x+9)$
9. $(x-9)(x-2)$
10. $(x+12)(x-1)$
11. $(x-4)(x+2)$
12. $(x-5)(x+5)$
13. $(x-3)(x-4)$
14. $(x-6)(x+4)$
15. $2(x+8)(x+3)$
16. $3(x-6)(x-3)$
17. $4(x+7)(x-5)$
18. $(x-7)(x+7)$
19. $5(x+4)(x+4)$
20. $x(x-8)(x+2)$
21. $2 x(x-7)(x-1)$
22. $x(x-4)(x+4)$
23. $2 x(x-9)$
24.3($x-6$) $(x-2)$
24. $2 x y(x-8)(x+8)$
